
II

Kl UNA
w e

T C AL
OTE

Programs ro TEST:
fem for Program Developmen and

areSimula . of Digital CorreIator
U~ manual

by
Terranc:e Ho

EISCAT Technical Note 81/25

PROGRAMS CORRSIM, CORRTEST:

SYSTEM FOR PROGRAM OEVELOPMENT AND SOFTWARE SIMULATION

OF

EISCAT DIGITAL CORRELATOR.

USER'S MANUAL

by

TERRANCE HO
MAX PLANCK INSTITUT
POSTFACH 20
0-3411 KATLENBURG-LINOAU 3
W. GERf1ANY

EISCAT Technical Note 81/25
Printed in Sweden
EISCAT Sc1entific Association
Kiruna. March 1981

ISSN 0349-2710

TABLE OF CONTENTS

I. INTROOUCTlON

11.1. CORRSIM PROGRAM STRUCTURE
11.2. CORRTEST PROGRAM STRUCTURE

III. START OF CORRSIM

IV. DEVELOPMENT OF CDRRELATOR PROGRAMS, USE OF FUNCTION
EDITOR (CDRRSIM)

lV.I. SET VALUE CO~~ANDS

IV.2. DELETE COMMANDS
IV.3. LIST COMMANDS
IV.4. COt'/·IAND SH (Shift)
IV.S. PRINT COMMANOS
IV.6. COMNAND R (Read File)
IV.7. COMMAND W(Write File)

V. SUMMARY OF ALL COMMANDS FOR THE EDITOR (CORRSIM)

VI. INTERACTIVE COMMUNICATION WITH THE CORRELATOR, USE
OF FUNCTIDN CORRLD

VI.l. COMMAND S (Set Value)
VI.2. COM~~ND R (Reset)
VI.3. CO~IMAND D (Display Data Field)
VI.4. COI1MAND P (Program)
Vl. 5. COf'/IAND II (Mode)
VI.6. COMMAND LM (List Mode)
Vl.7. COMMAND INT (Integer)
VI.B. COMI~ND DCT (Detal)
Vl.g. COMMAND C (Camae)
VI.IO. COMMAND L (Load)
VI.ll. COMMAND B (Begin)
VI.12. COMMAND V (Value)
VI.13. COMMAND I (Inspect RTCOMMDN)
VI.14. COMMAND PRINT
VI.15. COMMAND G (Graphic)
VI.16. CO~IAND NODI~

PAGE

l

2

3

7

10

11

13

13
14
14
15
15

17

19

23
23
23
23
24
24
24
24
25
25
25
27
27
27
27
27

PAGE

VI.I? COW~AND ADC (A/D Converter) 28
V1.18. COMMAND 8UFF (Buffer) 28

VI I. SUMMARY OF ALL COMMANDS FOR CORRLO 29

VI II. START OF CORRTEST 30

IX. USE OF FUNCTION EDITOR (CORRTEST) 31

X. SUr~~RY OF ALL COf~ANDS FOR THE EDITDR (CORRTEST) 32

XI. REAL-TIME CORRELATOR PROGRAM SIMULATION, USE OF
FUNCTION PRDTEST 33'

XII. SIMULATIDN OF CORRELATOR ARITHMETIC, USE OF
FUNCTION ARITEST 39

XII I. REFERENCES 41

APPENDIX A 41

PREFACE

The program CORRSIM as described in the report "PROGRAM CORRSIM: SYSTEM

FOR DEVELOPMENT AND SOFTWARE SIMULATION OF EISCAT DIGITAL CORRELATOR. USER'S

MANUAL" by Hans-J~rgen Alker, printed October 1978, has been taken off the

NORD 10 camputer system and has been replaced by two new programs CORRSIM

and CORRTEST. These two programs have been written as there was a need to

refine and to further develop the original CORRSIM program. Therefore all

references made to CORRSIM refer to the new CORRSIM program and should not

be confused with the old CORRSIM program.

Terrance Ho

Max Planck Institut fur Aeronomie

0-3411 Katlenburg-Lindau 3

- l -

I, INTROOUCTlON

The programs CORRSIM and CORRTEST are multi-function software packages

for development and testing of user defined correlator programs. CORRSIM

a150 includes software-drivers for program-loading of the correlator and

direct-memory-access (OMA) handling of data from the external correlator

SQurce to the NORD 10 camputer.

CORRSIM offers a systematic way of real-time correlator programming and

with the addit;onal options for interactive communication with the corre~

latar creates 31 effective system for external hardware testing and con­

tral.

CORRTEST offers a systematic way of testing correlator programs off­

line by simulating the correlator hardware and producing outputs of each

micra-instructian as it laops through the micro-program. Furthermore the

data results can be stored on a file which can be compared directly with

the data results from the correlator when using CORRSIM,

The EISCAT digital correlator is a multi-processor system for real­

time contral and interfacing of separate internal functions. The program­

ming is based on micra-instructian definitions in decimal form (integer

code) or can a1so be prograrrmed using the "higher level language" PREPASS

system which produces a data file that can be read by CORRSIM. Further

information can be found in the report: ilA description of the assembly

language for the EISCAT Digital Correlator U by Baard Tärustad. printed

August 1979, To be able to use CORRSIM and CORRTEST it is assumed that

the user ;5 familiar with the basic instruction set of the correlator.

This infonnation can be found in the report: Ulnstnction Manual for EISCAT

Digital Correlator (Revised)u.

- 2

Il. I CORRSIM PROGRAM STRUCTURE

Interactive communication with correlator hardware

load correlator data registers / program memory.

- Enable CAMAC registers for DMA transfer from correlator

to Nord 10.

- Start correlator in several different ways.

Look at data in RT-COMMON

Display of data transferred via DMA from correlator resul t

- Decoding of user-defined micro-instructions.

BEGIN

INSPECTRTC

VALUE

The program is modular constructed and split inta blocks af program­

routines corresponding to separate program functions. The program separa­

tion is sketched in Figure 1. The block termed MAIN has the function

seleetian program SIMUl for either the subroutine EOITOR or CORRlO. The

various program blocks can be broken down in the following way:

EDITOR - Correlator program development and modification

SvtHAB

CODE AB

LCI

LC2

LC3

APBM

ARI

SACC

OUTPTR

CORRLO

WCORR

or·IAEMABLE

PRINT

GRAPHIC

memory.

- Print data on line printer.

- Graphic display of data

The files PROGO. PROGl, PROG2, etc are a library of fixed subroutines

and programs (read access on1y). The user file can be a file of any name.

Thus any number of fixed subrautines can be read inta the common area and

a main program constructed to link the subroutines and the resulting pro-

- 3 -

gram written to a file of the users chaice.

The main operational mode when runoiog CORRSIM is by ;nteract;ve communi­

cation with the program and it is recon~ended to use a display terminal.

However. if the user wishes to use the GRAPHIC option he/she must use a

Tektronix terminal.

All numeric input/output in CORRSIM can be given in INTEGER or OCTAL

format. depending on which mode is chosen. The only exception to this ;s

when defining the data/program fields. These must be given ;n INTEGER for­

mat regardless of which mode that has been seleeted.

11.2 CORRTEST PROGRAM STRUCTURE

The program ;s modul ar constructed and split into blocks of program

routines corresponding to separate program functions. The program separa­

tion is sketched in Figure 2. The block termed MAIN has the function se­

leetion program CORRTEST for either the subroutines EDITOR. PRDTST. ARITST.

The various program blocks can be broken down in the following way:

EOITOR - Modification of data field only.

PROTST } - Real-time simulation of correlator hardware

DAPBM

ARITST - Simulation of correlator arithmetic for fixed programs.

The CORRTEST program assumes that complete correlator programs are read

inta the common area. Only modification to the data field is allowed. The

CORRTEST fiIes X-DATAl and Y-DATAl stores the test data vaIues whieh are

also fixed in the correlator. This data forms the basis for the simulation

of correlator arithmetic. The CORRTEST file DMADUMP is a file to which the

data of the simulated correlator result memory can be written to. Thus data

from the ARITST or PROTST routines can be compared with the actual values

of the correlator result memory when using CORRSIM.

The main operational mode when runn;ng CORRTEST is by interactive

- 4 -

communication with the program and it is recommended to use a display ter­

mi na 1 .

Nate that all numeric input in CORRTEST are in INTEGER format. Numeric

output can be given in either INTEGER or OCTAL format, depending on which

option that has been chosen.

COMMON AREA: } "IMAGE" OF
DATA-FIELD CORRELATOR
PROGRAM-FIELD REGISTERS AND

PROGRAM-MEMORY

U'1

FILES FOR
FIXED
SUBROUTINES
AND
PROGRAMS

~ USER FILE:
ANY NAME

PROGlil
PROG1
PROG2
PROG3
PROG4
PROGS

··•
PROGN

r-"
I
I
I
I

I
I

I
I

I
I r
I I

I
I I
I I
I I
I I
I I
I I
I I
I I
l I
I I

R/W: : R
I I.....

!
SYMTAB
CONDCO
CODEAB
I C1
LC2
LC3
APBM
ARI
SACC
OUTPTR

..
I EDIlOR I

MAIN
SIMUL

j l--

r

CORRLO
- WCORR

DMAENABLE
BEGIN

INSPECTRTC
VALUE
PRINT
GRAPHIC..,.

,,
I
I
L ,

,--- I
, I

I DMA-READ TO I
~I I

1-- - - -- - - - -.,..: RT COMMON :
l IL ~

CAMAC
OUTPUT
MODULE

CAMAC
INPUT

MODULE
AND

CDMA

CORRELATOR
HARDWARE

--------.

.-------

\. uv '

PROGRAM/DATA
LOADER AND
DMA-DATA
HANDLING

l v l

PROGRAM DEVELOPMENT,
DECODING OF MICRO
INSTRUCTIONS

l \I I

DATA AND FILE STRUCTURE

- --- --.. DATA FLOW
------~.PROGRAM SELECTION

FIGURE 1. CORRSIM STRUCTURE

DATA TO
FILE DMADUMP

MAIN

CORRTEST

i T
l J

, ARITST I PROTST I EDITOR j
DAPBM

X-DATAI
l ,- -- -
I , I Y-DATAIR/H: ,

I
I ,

,/

:RI, ,
I ,
I I

...,
COMMON AREA:

~ "IMAGE" OF '"
DATA-FIELD CORRELATOR
PROGRA~1-FIELD REGISTERS AND
TEST DATA PROGRAM-MEMORY
SEQUENCE

,
'w1- I

,
JJ

,,
Ji __•,,

,j,

r _RLW_ - - - USER FILE:
ANY NAME

I I

"SIMULATION OF
CORRELATOR
ARITHMETIC

\ I l J
'V V

REAL-TIME MODIFICATION OF
SIMULATION DATA-FIELD ONLY
OF PROGRAM
EXECUTION

I I
v

DATA AND FILE STRUCTURE

-----7 DATA FLOW

--~) PROGRAM SELECTION

FIGURE 2. CORRTEST STRUCTURE

- 7 -

III. START OF CORRSIM

The program is stored on the user-fil. (CORR-TEST)CORRSIM and is started

with the SINTRAN command: (CORR-TEST)CORRSIM

or simplified: (CO-TE)CORRSIM

The response from the program ;s

PROGRAM CORRSIM IS ACTlVE

THE SIMULATOR CONSTITS OF 2 MAIN SUBROUTINES:

SUBROUTINE EOITOR FOR PROGRÄM SET-UP AND MOOIFICATION

SUBROUTINE CORRLO FOR I/O-COMMUNICATION ,IlTH THE CORRELATOR

THE SIMULATOR IS TERMINATED BY TYPING FIN

NOTE: FOR SIMULATION OF PROGRAM-EXECUTION USE PROGRAM CORRTEST

The program then asks for function-selection:

GIVE COMMAND (IOITOR, ~ORRLO, OF ~IN):

(- denotes the necessary character input)

General commands available in all function-subroutines. whenever the

program asks for a non-numeric input. are:

EXIT (termination of function-subroutine)

FIN (terminatian of CORRSIM)

whenever an illegal command is typed on the terminal the response is:

ILLEGAL COMMAND

All numeric input/output of CORRSIM is either INTEGER or OCTAL, with

the exception when defining the data/program fields which are always in

INTEGER format. All numer;c input must be tenninated by "." regardless of

which mode ;s being used.

When the program is started with (CO-TE)CORRSIM all main internal pro­

gram parameters are reset. This means that after a FIN command has been

generated all earlier set parameters are lost. This problem can be avoided

by stopp;ng CORRSIM with a user-break. SINTRAN commands will then be avai-

- 8 -

laDle. The program can be restarted from break-point with earlier defined

values with the SINTRAN command:

GOTO USER

Alternatively the program with its particular set of parameters can be

saved by writing it anta a file before generating a FIN command.

Together with program generated error messages the run time error dia­

gnostics in SINTRAN are active. mainly giving error messages when input

format specifications are not fulfilled.

U>

59
60
61
62
63

RAMORAMIRAM2RAM3RAM4RAM5RN16

\ J, v
PROGRAM-FIELD

VALUE RANGE (INTEGER) IN ALL LOCATIONS: 0-65535

RAM7

INTE GER ADDRESS

15 14 13 12 11 10 9 8

15 O 15 O 15 O 15 O 15 O 15 O 15 O 15 O
-r-r-T1 r--r--Jl "........ rT""I r-TI rT""I r-TI rT""J'I O

1

§~

0-65535

0-63

0-65535

0-65535

0-65535

0-4095

l

4

5

6

16,0
16,1
16,2

16,15

17,0
17,1
17,2

INTEGER VALUE
AD DRESS RANGE

15 O
VIZZI/77771

5 O
[27J

15 O

Vl/I/JIA
15 O
ImlZ11

15 O
II}}};)

STATUS WORD (STAT)
START ADDRESS
REGISTER (SAR)
BASE ADDRESS
REGISTER (BAR)

DATAI REGISTER, APB

REGISTER STACK
FOR APB (APBRS)

17,15

LOAD REGISTER FOR 11 O
LOOP COUNTER 1 (LCR1) V! 77 A 18 0-4095
LOAD REGISTER FOR 11 O
LOOP COUNTER 2 (LCR2) V77 771 19 0-4095
LOAD REGISTER FOR 11 O
LOOP COUNTER 3 (LCR3) Vj 77lA 20 0-4095

"CORRELATOR READY" 1 O
~EGISTER (CRA) ~ 63 0-1

v)
DATA-FIELD

REGISTER STACK
FOR APM (APr1RS)

FIGURE 3. CQt1PUTER" IMAGE" OF CORRELATOR DATA/PROGRAt1 LOCATIONS

- 10 -

IV DEVELOPMENT OF CORRELATOR PROGRAMS. USE OF FUNCTION ED1TOR (CORRSIM)

When the EDITOR COMMAND is given. the edltor will respond by typing

C'

on the terminal. The editor is now ready for accepting commands.

The basic principle for the development of correlator programs is a

creation of an "image" of the correlator progral111lable registers and pro­

gram memory, this image ;s integer coded and is split inta two parts:

DATA-FIELD where all eorrelator data registers are loeated.

PROGRAM-FIELD where the correlator program memory is located.

The program memory is split ;~to B separate modules (given by hardware

eonstruetion) termed RAMD. RAMI ...• RAM8. Eaeh module has a word length

of 16 BITS and 64 memory locations. One correlator micro-instruction con­

tains 128 bits and allocates one 16 BIT word location in each module. The

correlator data-registers, register-stacks and memory modules are identi­

fied by an integer ADORESS parameter. individual register stack and memory

module locations are identified by an integer SUB-AODRESS pa,-amettr _ Tte

data and (:rogram fie·ld structures are given in Figure 3 tagether with the

integer addresses/subaddresses and value range. With this program structure

a micro-instruction location is identified by the SUB-ADDRESS parameter

(same location in all modules). For further information about micro-instruc­

tian separation into main internal correlator functions and available in­

struction set see Ref. l.

The data/program field in the editor is kept in common and are used by

all other function programs in CDRRSTM. TOQether with the "image" in common

is also stored a library of flag registers indicatinQ which of the register/

program locations are defined by the user.

The editor commands are divided inta sub-groups accordinQ to different

functions. These are:

SET VALUE COMMANDS:

DELETE COMMANDS:

LIST CDMMANDS:

PRINT COMMANDS:

SHIFT CO/IMAND:

READ DATA F!LE:

WRITE DATA FILE:

IV.! SET VALUE COMMANDS

- II -

for loadinq and defining locatians in data/

program field.

Reset-function

for display output of defined values

for line printer output of defined values.

to shift a set of defined memory locatians from

one Dart of the memory to another.

input from user defined file or fixed program from

CORRSIM files.

output of defined values to user (ile.

There are two commands available in order to enter data in the different

registers and program memory 10cation5 of the correlator.

COMMAND SDF (Set data field)

The registers of the data field can now be defined. The CORRSIM response

to the SDF command is:

GIVE ADDRESS, SUBADDRESS. (TYPE O for END):

The register integer address and subaddress is then entered with the numeric

field terminatian ",". After checking the address and subaddress values the

response will be (if addressjsubaddress values are valid):

GIVE DATA:

The integer value can then be entered. After checking the value (and is

valid) a new address input will be asked for. The loading sequence is termi­

nated by entering "O" for the address or simply by giving a "return". The

response will then be:

nn REGISTER LOCATIONS ARE DEFINED

C'

Nate that whenever a subaddress is not required (the single registers in

the data-field) it is not necessary to enter 1t01t.

- 12 -

COMf~ANO SPS:FUNCTION (set program function instructions separate)

The function has the following legal names:

PRO program instruction

APB instruction for buffer address processor.

APM instruction for result rnemory address processor.

ARI instruction for correlator arlthmethic

ACC instruction for the accumulators

I/O i os truc t; on for input/output bus handl ing.

OUT DMA output and display function

The different FUNCI!ON names correspond to th~ correlator main internal

operations which are processed in parallel.

The program response to the command is:

GIVE MEMORY-LOCATION. (TYPE 64 FOR ENO):

where the location corresponds to the subaddress parameter in the program­

memary. If the location isalready defined the program displays the integer

values of the different sub-instructions of the function and then asks for:

GIVE INSTR.· (SWING OF SUB-INSTRUCTION PARAr~ETERS)

where the parameter names follow the structure given in the ;nstruction­

mannual (Ref.l) Af ter the integer values of the parameters have been entered

(all values on the same line) they are then tested for valldity and if they

are valid a display of the new instruction word follows with earlier defined

instruction words of lower memory locations (at most 15 locations are dis­

played). The loading sequence is then repeated until the terminatian address

64 is given. The loading sequence is then terminated 3nd the number of

defined function instructions are given. ~Jhen consecutive function locations

should have the same values .hen the repeat loading format can be used by

entering the lower. uppel' memory location when the address is given.

When loading an undeflned memory loration the SDS PRO instruction must

be used first.

- 13 -

IV. 2 OELETE COMMANOS

There are three commands for deleting defined values in the data and

program fields.

COMMAND O

All defined parameters in the data and program fields are deleted.

CO~~ANO 00 (delete data)

The program response to the command is:

GIVE AOOR., SUBAOOR. FOR DATAFIELD (TYPE O FOR END):

COMMAND OP ~lete program)

The memory location of all the RAM modules (ie. 12B BITS) will be deleted.

The program response to the command is:

GIVE MEMORY-LOCATION (TYPE 64 FOR END):

The repeat delete format can be used for deleting concecutive memory

location by entering the lower. upper memory location.

IV.3 LIST COM~ANOS

The follow;ng commands are available.

COMMAND LO (list data)

All defined data registers are displayed.

CO~~lANO LP (list program field)

The program response is:

GIVE LOWER, UPPER, VALUE IN MEMORY FOR DISPLAY:

The defined memory locations of all the RAM modules in octal format will

be displayed. If none of the referenced memory locations are defined the

program will display:

NO LOCATIONS IN PROGRAM-FIELD OEFINfO

If only one memory location should be dlsplayed then the LOWER parameter

should be defined. Default address values (0.0,) or just a "return" will

give a display of all defined locations of the memory.

- 14 -

COMMAND LPS:FUNCTJON (l ist program funct;on instructions separate)

The legal function names are given under the SPS command.

The address format ;s as for the LP command.

COMMAND lPD (list program decoded)

The address format is as for the LP command.

The LPD command gives a decoding of the complete micra instruction in

a "high level II language. All values in the micra ;nstruction are tested

for legal ity.

IV.4 CDMMAND SH (shift)

The program response is:

GIVE lOWER, UPPER, SHIFT PAR

The LOWER to UPPER memory locations will be shifted by an amount defined

by the SHIFT PAR. (ie. lDWER+SHIFT PAR. to UPPER+SHIFT PAR.) in the memory.

If a direct jump address is defined it will be automatically adjusted. The

memory locations from LOWER to UPPER will a150 remain defined.

IV.5 PRJNT COMMANDS

The response to the f;rst print command is:

CURRENT IDENTIFICATION NAME:

(TEXT STRING GIVING PROGRAM NAME)

DD YDU WISH NEW IDENTIFICATION NAME? TYPE Y OR N

If Y is typed the next response 1S:

GIVE PROGRAM-IDENTIFICATION NAME (MAX. 80 CHA.) FOR PRINT:

A text string can now be entered. The old text will then be replaced by

the new one.

COMl1AND PDP (print data and program field)

All defined registers in the data field will be printed and an "image"

of all the defined locations in the RAM modules will be printed in octal.

COMMAND PPS (print program function instructions separate)

- 15 -

All defined memory locations will be printed for all functions.

COMMAND PPD (print program decoded)

All defined memory locations will be printed in the decoded form.

COMMAND PEND (print end)

The print-out on the line-printer will be obtained immediately.

IV.6 COMMAND R (read file)

This command allows any user-defined file to be read inta CORRSIM.

The program response is:

GIVE FILE NAME:

The user-defined file name can now be entered.

The next response is:

GIVE ENTRY-P01NT IN CORRELATOR MEMORY:

This parameter enables the user to place the program beiog read anywhere

in the memory in locations relative to those defined by the subaddresses

in the program. If default value (O) ;s used then all data values will be

loaded inta the locations defined by the subaddress parameter. If the entry­

point ;s other then zero (positive or negative) then all data values will

be loaded into the memory locations defined by the subaddress parameter

plus the entry-point value. Memory location O is not affected by the entry­

point value and if a jump address has been defined this will be automatically

adjusted.

IV.? COMMAND W(Write file)

The command allows the user to write the program (data/program field)

anta any file.

The program response is:

GIVE FILE NAME:

The user can enter any file name.

The next response is:

- 16

CURRENT IOENTIFICATION NAME:

(TEXT STRING GIVING PROGRAM NAME)

00 YOU WISH NEW IOENTIFICATION NAME? TYPE Y OR N

If Y is typed the next response is:

GIVE FILE IOENTIFICATION NAME (MAX. BO CHA.):

A text string can now be entered. The old text will then be reolaced by

the new one. The next response is:

GIVE LOWER? UPPER MEM-LOCATION FOR FILE-OUMP:

With default values (0,0) all defined data registers and program locations

will be written onto the file. With any other values all defined data re­

gisters and onlv those defined memory locations between LOWER, UPPER will

be written onto the file.

The file format for defined locations is:

(TEXT STRING) FORMAT (BOAl)

(Addr.),(Subaddr.) (data value) FORMAT (213,16)

(Addr.),(Subaddr.) (data value)

0.0,0

The O's loaded at the end is a indication of end of data.

- 17 -

V SU~~ARY OF ALL COMMANDS FOR THE EDITOR (CORRSIM)

A

D

DO

DP

E,EX,EXIT

F,FIN

H,HELP

LO

LP

LPD

LPS:PRO

LPS:APB

LPS:APM

LPS:ARI

LPS :ACC

LPS:I/O

LPS:OUT

POP

PPS

PPD

PEND

Address assignments of data/program fields of the

correla tor

Oelete data and program fields

Delete data field

Delete program field.

Exit from EDITDR

terminate CORRSIM

lists valid commands for EOITOR

All defined data registers are displayed

All defined program locations are displayed in Octal as

RAM modules.

All defined proQram locations are decoded

All defined program instructions are displayed

All defined instruction for buffer address processor

are displayed

All defined instructions for result memory address pro-

cessor are disDlayed

All defined instructions for correlator arithmetic are

displayed

All defined instructions for accumulators are displayed.

All defined instruct;ons for input/output bus handling

are displayed

All defined instructions for DMA output are displayed.

All defined data reqisters and program locations in oc­

tal as RAM modules are printed

All defined program functions are printed separately.

All defined Drooram locations are printed decoded.

To obtain output on line-printer

R

SDF

SPS:PRD

SPS:APB

SPS:APM

SPS:ARl

SPS:ACC

SPS: l/D

SPS: OUT

W

- 18 -

Read from file

Data registers are defined

Program instructions are defined

Buffer address processor instructions are defined

Result memory address processor instructions are de­

fined

Correlator arithmetic instructions are defined

Accumulator instructions are defined

Input/output was instructions are defined

DMA output instructions are defined.

Write to file.

- Ig -

VI INTERACTIVE COMMUNICATION WITH THE CORRELATOR. USE OF FUNCTION CORRLO

The CORRlO function is a sofbsare system which connects the CORRSH1

program to the correlator hardware. The input/output transfer of data is

established by use of stardardized CAMAC interface modules and the CORRLO

function uses ordinary CAHAC calls to achieve this data transfer. The

physical interface structure is shown in Figure 4.

The C~IAC module 9043 (dual output register) is used for loading the

correlator system. The A register output is the driver for the correlator

system address/data bus. This bus connects all carrelator modules to the

camputer. Each correlator modul e is identified by the CORRElATOR IDENT

CODE. This parameter must always be defined in the status word (see Ref. l

for further details) of the carrelator program before entering CORRLO. The

iden t-code is a select command and is lacated in the address transferred.

The software system checks that a response is given by the selected corre­

latar module. The A register bus is used for both the address and data

transfer in which a 16 BIT data word is transferred in two cycles; the 1st

cycle is for the transfer of the ident-code together with the internal re­

gister address. the 2nd cycle is for the data transfer. The B register bus

transmits the necessary contral commands. lncluding the computer start com­

mand of the correlators and the MASTER RESET signal. This control bus is

common for all correlator modules. The input transfer from the correlator

system is through the CAMAC modul e 9041 (dual input register) where only

the A register is used. The C~lAC input modul e is under the control of the

C~1A module for direct memory access (DMA) of the correlator data to the

computer memory.

Note that it is possible to use test data (identical ta the data on the

X-DATAl, Y-DATAl files. See Fig. 2) in the carrelator modul e during micro­

program execution and the results can then be used for debugging purposes

by comparison with the results from the simulator system.

CAMAC
OUTPUT
MODULE

STATION ADDRESS: 20

CAMAC
INPUT
MODULE

STATION ADDRESS: 21

CAI~AC

CDMA
MODULE

N
O

FIGURE 4. INTERFACE BETWEEN CORRELATOR SYSTEM AND COMPUTER

N......

START

.." fl /1 CONTROL
BUS

SUBR.
STCOR

NO. OF I
ACTIVATIOi~S

WITH .
COMPARISON I

___JSET UP VALUES FOR TRANSFER

lINUSEREREA
, ,

PRINT

PROGRAM I * SET VALUE (READY/ST~AT~U~S~W~O~RD~)~~------
EDITOR" ==:;[CORR~ i· 1CONTROL .-----,

EXIT J :III ~OAD
1,111

----- - - I, DEFIt~E!: LIST >1
SINGLE REDEFINE un,n-, .~~u ,

__Ml{l r;_?_,,_; __ >..

GRAPHTC J I ~mET (ALS'O STlllEADTS0L.-
IBEGIN ----

VALUE ~-

OUTPUT vTO i~G-R--":LpH-O-F DI;~LAY L~ DMA "'" Nn I NO. OF
LINE PRINTER DATA DMA DATA ~RANSFER~' ACTIVATIONSI ,

I I I ../,- 'r-- ~----- ..ESL, I ~CO"PARE ~)...:.N:.:.O _

:+ YES

COPY DATA FROI.,I I
DATA ~ FILE DMADUMP ~
,,/ V TO I NUSERAREA :
~ '

I -----

iCOPY DATA FROM
RTCO~1t~ON TO) ,
INUSERAREA

INSPECTRTC

"
I NSPECT DATA i
FROM RTCOMMON,

. ---'

.~ : DATA

COMPUTER
CAMAC r l MEMORY
INPUT
MODULE I~TCOMMON

OO~~'I'/
MEMORY I .DMA CHANNEL
BUS V,' -~l' I I,l...----I­

L..:.-.o.- ~~
CDMA
MODULE

FIGURE 5 STRUCTURE OF CORRLO SYSTEM

- 22 -

The output transfer of data from the correlator is under micra-program

contral.

The CORRLO subroutine is structurized as a command processor. A flow

diagram describing the system is shown in Figure 5. Af ter the subroutine

CORRLO is called the response is:

l*

indicating that the cOlmland processor ;s active.

Several error situations may arise when CORRLO is seleeted. These are:

1. If the statusl.'sot'd is not defined. The response will be :

WARNING: STATUS WO RO NOT OEFINEO.

2. If the statusword is defined but the correlator IDENT-CODE is not set.

The response will be:

WARNING: CORRELATOR-MOOULE NO. MUST BE , O.

In the case of l and 2 the user should redefine the statusword.

3. If the power is not turned on to the CAMAC crate and/or the correlator

module. The response will be:

NO COMMUNICATION WITH CORRELATOR

and a return to SIMUL will be made.

4. If the correlator is in a data load sequence. This can occur if an­

other user is using the correlator. The response will be:

CORRELATOR IN OATA-LOAO SEQUENCE

l*

5. If the correlator is running. This can occur if another user is using

the eorrelator. The response will be:

CORRELATOR IS RUllNING

L*

4 and 5 arp essentially not errors but the user will not be able to

con~unicate with the correlator until it is inactive again. The best

pol iey here ItJOuld be to check with who is using the correlator so as

to avoid any nl1sunderstandinq!

- 23 -

VI.1 COMMAND S (set value)

The pragramm response is:

REAOY OR STATUSWORO:

tf the response ;s R (READY), the correlator READY register will be set.

This reqis~pr must always be set befare a START command is generated either

from the computer or the radar controller. If the eRA register (address =

63) in the data field ;s not set, it will automatically be set. By implica­

tion the correlator READY register can be set if the eRA register is de­

fined and a LOAO co"~and is used. The register will be set until 3 RESET

command is generated.

If the response ;s S (STATUSWORO). the status word register in the corre­

lator eall be redefined. The STAT register (address = 1) will automatically

be redefined. The correlator status word register can alsc be redefined by

use of the LOAO SI NGLE comma nd. Note tha t the corre l a tor I DENT CODE mus t

always be giv~n when redefining the statusword.

VI.2 .COMIIANO R (RESET)

The R command w111 terminate internal program execution in the correlatOl"

and reset the READY register. All other register/program locations will not

be affectea.

VI.3 COl>1iWW O (Display data field)

The D cOll1l1lClnd will display all defined registers in the data field.

VI.4 CO~~'IANO P (Program)

The p CO,H .:llld will execute a jump to the EOITOR. A later EXIT 1n the

EOITOR will return contl"ol back to the command processor. This is a means

whereby quick changes can be made to the program field.

- 24 -

VI.5 COMMAND M (Mode)

The Mcommand defines what kind of data will be transferred from the

correlator. By default when entering CORRLO the following assumptions are

made:

l. 64 BIT result memory words are transferred

2. The status and contral words are not transferred

3. The DATA I register in the data field is not used for the transfer

parameter (i.e. no. of words being transferred from the correlator)

The var;ous options are:

1. 64 BIT I'esult memory wordsj 16 BIT testwords of kind l, 16 BIT test­

words of ki nd 2.

2. The status and contral words are transferred either before or af ter

the da ta.

3. The DATAI register can be used for the transfer parameter. It is re­

comm~nded to use this register as all final programs for experiment

must use this register for the transfer parameter.

VI.6 COfl~IAND lfl (l ist Mode)

An output of the mode status will be given.

v r. 7 CDrlr1AND l NT (l "teger)

The INT command 5ets the processor ln integer mode. All nurner;c input

to the processor lUS t be gi ven i n i nteger formel t. All numer ic ou tpu t will

be given in ;nteger format.

VI.8 COMMAND OCT (Octal)

The aCT command sets the processor in octal mode. All numeric input to

the processor must be given in octal format. The onl)' exception to this is

when u~ing the LOAD SlIiGLE command which accepts only integer format. All

numeric output will be given in octal format except when using the LOAD

- 25 -

command.

VI. 9 COI~1ANDC (CAMAC)

The C command gives the present status of the word-count and memory­

address registers in octal fonnat.

VI.lO COMMAND L (LOAD)

The program response is:

MULTIPLE LOAD GIVES TRANSFER OF ALL DEFINED VALUES

SINGLE OR MULTIPLE TRANSFER?:

If the response ;s M(Multiple) a direct load of all previous defined para­

meters will be made. During loading the communication with the correlator

;s checked and if no errors occur the loading is terminated by

MULTIPLE LOAD ENDED. nn 16-BIT VALUES TRANSFERRED.

where nn ;s the integer number of registers/RAM locations defined.

If the response is S (single) the program will respond with:

GIVE ADDRESS. SUBADDRESS. (TYPE O FOR END):

If the address. subaddress parameters are valid the next response ;s

GIVE DATA:

Nate th3t on1y the data-field can be loaded in this way and these registers

will be definedjredefined during the transfer to the correlator.

VI.II COMMAND B (Begin)

The B command enables the user to start the correlator from the computer.

Before using this command the following conditions must exist:

l. The correlator must not be busy.

2. The correlator READY must be set.

3. The bit in the cOrl'elator status \'lord must be set for enabl ing the

computer to start the correlator.

The program response is:

- 26 -

DMA (Y DR RETURN/N):

If the response is N the program will respond Hith:

NR. OF STARTS (xxx)/FOREVER:

where xxx will either be INT or OCT depending on which mode ;s chosen. When

all starts have been completed the program will respond with:

ALL (nn) ACTIVATJONS COMPLETED

L*

where nn ;s the no. of starts.

If the response is Y the program will respond with:

COMPARISON (Y/N OR RETURN):

Jf the response ;s N and the DATAI register ;s not beiog used as the trans­

fer parameter as defined in MODE the program will then ask for either the

no. of 64 BIT result memory worcts or 16 BIT testwords as defined in MODE.

The CDMA module in the CAMAC crate \'.'i11 now be enabled and the word count

register, WCR. will be loaded with the number of 16 BIT words and the corre­

lator started. If the DATA I register has been defined in MODE the program

will use this register to extract the relevant no. of words to be transferred.

When successfull activations and DMA transfer has been executed the response

is then:

CDRRELATOR DONE

L*

If the response is Y the program response is:

YOU ARE COMPARING WITH WHAT (PREVIOUS DUMP: PREV/FILE):

If the response is PREV then the data in RTCO~10N will be copied over to

INUSERAREA for comparison.

If the response is FIlE then the data from file DMAOUMP will be copied over

to INUSERAREA for comparison.

The next response is.

NO. OF STARTS WITH CDMPARISON (xxx. ND./ETERNAL):

where x~x is either INT or aCT depending on which mode is chosen. The CDMA

- 27 -

module will now be enabled, the correlator started and a comparison made

between the data in INUSERAREA and RTCOMMON. If there ;s no mismatch then

after every successful activation the program response is:

ACT. nn OK

where nn ;s the no. of times the correlator has started.

If there ;s amismatch then the program response is:

MISMATCH:AODR NO.: nn: SYflB MASTER: YY CDRRELATOR: ZZ

where nn is the location of the 64 BIT word in the result memory. SYMB ;s

whether it ;s the most/least significant part in CHANNEl 1 or 2, VY 1S the

value from INUSERAREA and Zl is the value from the correlator. The values are

in either integer or octal depending on which mode has been set.

If there are more than 14 mismatches the program will stop.

VI.12 COMI'IAND V (value of data)

The V command displays the real and imaginary parts (32 BITS for each

part) of the data in either integer or actal.

VI.13 COMMAND I (In,peet RTC0I1MON)

The I command displays the data as transferred from the correlacor i.e.

16 BIT values in either integer or actal.

VI.14 COMl1AND PRINT

The PRINT cOlllnand outputs the real and imaginary parts of the data in

either integer or actalon the line printer.

VI.IS COMMAND G (Graphie)

The G command displays a graph of the real and imaginary parts of the

data.

VI.16 COMMAND NODMA

- 28 -

The NODMA Cornnand enables the user to initialize CORRSrr'1 to "grab" data

from RT-CQf>U-lON when the correlator is under contral from another Soun~e, e.q

from another user or under EROS.

VI.II COMMAND ADC (A/D converter)

The ADC corrmand enables the user to set the channel number and the sampl ing

rate of the A/O converter.

VI.18 COMMAND BUFF (Buffer)

The BUFF command enables the user to set the channel number (program

counter) and start address of the buffer memory.

- 29 -

VII. SUMMARY OF ALL COMMANOS FOR CORRLO

Set A/D converter

Start the correlator

Set buffer memory

Status of CAMAC word-count and memory-address registers are dis-

played

D All defined registers in the data field are displayed

E Exit from CORRLO

F Terminate CORRSIM

G Real and Imaginary parts of data are displayed.

H or HELP Lists valld command s for CORRLO

Data ;s displayed as transferred from correlator.

INT Sets processor in integer mode

L loacts the correlator

LM Outputs the MODE status

M Sets mode for data transfer from correlator

NOOMA Initial ize CORRSIM to "grab" data from RT-COMMON

aCT Sets processor in octal mode.

p Oirect jump to EOITOR

PRINT Outputs data on line printer

R Reset the correlatar

S Set value, either correlator REAOY or STATUS WO RO

V Displays data on the terminal.

AOC

B

BUFF

C

30 -

VI II START ,)1 CD" L"

The program ;s stored on ~h" user-file (CORR-TEST)CORRTEST and is started

with the SINTRAN Command (CORR-TE T)CORRTEST

or simplified: (CO-TE)CORR, SI

The response from the program i s

PROGRAfI CORRTEST [S ACTIVE

THE SIMULATOR CON'I'! 'F tt,AI'1 uRROUTINES:

SUBROUTINE EOITOR FOR PARAMETeR SET-UP AND MOOIFICATION

SUBROUTINE PROTEST FOR SIMULATION OF PROGRAM AND ARITHMETIC EXECUTION

SUBROUTINE ARITEST FOR SIMULATION OF FIXEO CORRELATOR PROGRAMS

THE SIMULATOR IS TERMINATED BY TYPING FIN

Note: FOR PROGRAH SET-UP AND I~OOIFICATTON AND OIRECT COMMUNICATION

WITH CORRELATOR USE PROGRAM CORRSIM

The program then asks for function-selection:

GIVE COMMAND (EOIlOR PROTEST, ARIlEST OR i:IN):

,_ denotes the ne~ess~ry c araeter input)

- 31 -

IX USE OF FUNCTION EDITDR (CORRTEST)

This EOITOR is a limited version of the EOITOR as described for program

CORRSIM. The main difference is that the program field cannat be modified or

decoded. The reason for this ;s that it is already assumed that complete

correlator programs exist and that the user wishes to test them off line.

The commands that exist are used in exactly the same way as those in the

EOITOR for CORRSIM therefore only a summary of the command s will be given

(see ch.pter X). For. description of the comm.nds see ch.pter IV.)

- 32 -

X. SU~IMARY OF ALL COMMANOS FOR EOITOR (CORRTEST)

A Address assigm:ents of the data field of the correlator

O Oelete data and program fields

00 Oelete data field

E,EX,EXIT Exit from EOITOR

F,FIN Terminate CORRTEST

H.HELP Lists all valid commands for EOITOR

lO All defined data registers are displayed

R Read from file

SDF Data registers are defined

W Write to fil e.

NOTE: With the R command an Entry-Point in Correlator Memory is not asked

for.

- 33 -

Xl. REAL-TIME CORRELATOR PROGRAM SIMULATION. USE OF FUNCTION PROTEST

Program development with the EISCAT ccrrelator requ;res "real-time" pro­

gramming, caused by the neccessary interfacing between the different internal

processors operated in parallel. There are two main contra l units in the corre­

latar; the CPU (Central Processing Unit) and the OPU (Data Process;ng Uni t).

The CPU is for control1ing the micra program execution and generation of the

read and write addresses for the buffer and result memories, the OPU ;s for

data processing operations on the X,Y samples. Programming models of these

two units are shown in Figures 6 and 7.

The program instruction word read from the memory contains subinstructions

which contrals the generation of the next program location to be read in the

next clock-interval. This location is given by the program-counter (PC). Con­

ditional branching in the program is realised by three separate loop counters

(lC!, LC2 and lC3) which are opera ted in parallel with control from different

subinstructions of the program instruction word. The loop-counters can be

loaded from separate load-registers (LCRl. LCR2 and LCR3) located in the data­

field. Also a temporary storage-register, LCRIA. can be used for storing values

from lC!. A four-level register-stuck with LIFO (Last-in first-out) structure

can be used for storing address-values (back loop branching). The next PC

value can be taken from one of four sources:

From the PC-incrementer (continue statement)

From the register-stack (return statement)

From address in the instruction (go to or jump statement)

From SAR-register (start address for the program)

Conditional branching or break-points of the program-counter is dependent on

the present instruction in the instruction register and the values of the loop

counters. See Ref. ! for the available instruction set. All locations in the

program memory can be used for programming. However two locations are used

for special purposes:

w..,.

P

l VIIsAR'!lA
READ

/'ZCCRIA/;j I1/LCRI/!1 V/IL R2'lA VI/LCR3/,!A WRITE --01 RSD I RSl I ~S2 RS31

~r ~ PC=PC+l I

L I

LCl LC2 I I LC3 I PC-SELECTION !PC-INCREMENTERI IPUSH/PO
I STACK

• LOAD/ ~LOAD/ ;LOAD/ 'I' I
I

DECRE- 'DECRE- :DECRE- ,SELECT I

:MENT I I

APM APB I MENT ,MENT
I II, I I I I

PROCESSOR PROCESSOR I I I , I

: I I I I• I ,
I I

CONTROL HARDWARE FOR -- ___ .J
I

---------- --------
_____ J

LOAD/SELECTION OPERATIONS
- t%: / l.

I PROGRAM
I

~;;~
~

I PROGRAM-INSTRUCTION REGISTER MEMORY LOCATION

'iii
'"

FOR LOAD

I-
-

DATA FROM MEMORY

FIGURE 6. CONTROL LOGIC OF CENTRAL PROCESSING UNIT

_ , , .. , v '''........

l l 1 l l 1 l
B A B A B A

ISELE~TION iSELE~TIONSELECTION SELECTION SELECTION SELECTION SELECTION SELECTION

B A B A B A B A

B REG. I A REG. B REG. I A REG. B REG. I A REG. B REG. I A REG.

~1ULTIPLIER 4 MULTIPLIER 3 t1ULTIPLIER 2 MULTI PLI ER 1

I I I 1
l 1 1 l

I ALU 34 l I ALU 12 I

DATA CHANNEL 2 DATA CHANNEL 1
ACCUMULATOR ACCUMULATOR

I-REG. O-REG. I-REG. O-REG.

(TO SAME ADDRESSl

l l
RESULT

MEMORY

FIGURE 7. CVITROL LOGIC OF DATA PRDCESSING UNIT

w
U1

- 36 -

Program Location O: This location ;s used for the idle status (corr-ela-

tor inactive) and should be programrned with an unconditional CONTINUE state­

ment. In this location the PC incrementer is inhibited so the correlator is

"idle" looping in location O. When a START command ;s entered from the radar

controller or from the function CORRLO of CORRSIM the PC value is automatically

set from the SAR register and the program branches to the start point of the

program. Therefore it is absolutely essential that the user has defined the

SAR register with the correct start point befare the correlator has been scar­

ted. In location O it ;s not permitted to have a DMA-output transfer or reloa­

ding of registers in the data field controlled by the program.

Program Location 63: In this location the PC incrementer is also inhibited.

This location is used with the real-time signal INTERUPT PROGRAM. See REF. 1.

Note that when an instruction word is loaded inta the instruction register at

the end of one cycle the corresponding action on the loop counters are per­

formed at the end of the next clock cycle. The only register not following

this concept is the LCRIA which is operated (loaded) on in the mid-part of the

eyele.

The X, Y samples are strobed into the A and B registers of the four multi­

pliers and then multiplied together. The ALU12 and ALU34 (Arithmetical Logical

Unit for multipliers l and 2, 3 and 4) then performs an operation on the multi­

pliers and the results are then strobed inta the Accumulators of Data Channel

l and 2 which are then added together with the values in the I-registers re­

spectively. The results are strobed into the O-registers and then written into

the correlator result memory as a 64 BlT word. Nate that although the strobing

of the same address from/to the result memory to the I-registers and from the

Q-registers is defined in the same program 1nstruction word the operation does

not actually take place in the same clock cycle. Because of the pipelining

structure of the correlator the values in the Q-registers are actually strobed

- 37 -

to the resul t memory in the next clock cycle therefore the same address in the

result memory should never be read from/to in the next instruction word.

The CORRTEST function PROTEST is a software simulation of the correlator

hardware. The program will execute cycle by cycle all defined micra program

instructions except those of the OUT instructions and tests are performed for

validity of those instructions. An output mapping of the program counter. the

LIFO register stacks, the loop counters, the lCRIA register, output values of

the APS and APM processors. the values of the multipliers. the values of the

AlUls,the values of the data cha~nels and an indication of whether a read/write

was made from/to the result memory. At the end of the simulation a cdlculation

is made of the required CPU time when executed in the physical system.

After entering PROTEST the program will then respond with:

START ON SUBROUTINE FOR SIMULATION OF PROGRAM AND ARITHMETICAL

EXECUTlON

GENERAL COMMANOS AVAILABLE:

EXIT TERMINATE THE SUBROUTINE

FIN TERMINATES THE PROGRAM

LIST GIVES LISTING OF OEFINED DATA-FIELD

GIVE CDl1MAND (!:IN, IXIT, !oIST, ~DNTlNUE):

(denotes the necessary character input)

Af ter the C has been given the next response is:

PRINT OF RESULTS? (TYPE y OR N):

If the input is Y the next response is:

DO YOU WISH [NTEGER OR OCTAL VALUES FOR ARITHMETICAL PART

OF SIMULATION PRINTED? (TYPE INT OR OCT):

If OCT is chosen only the output mapping as described above will be printed

in octal. All other outputs I'Iil1 be in integer fOrlTldt. The next response will

- 38 -

be

WHICH OPTION FOR OISPLAY? (PROGRAM, ARITHMETIC OR NEITHER. TYPE P,A,

OR N):

If the input is P then only values of the program counter. LIFO register

stacks. the laop counters, the lCRIA register and output values of the APa and

APM processors will be displayed in integer format.

If the input is A then only values of the program counter. multipliers. ALU's

the two data channels and an ;ndication whether a read and/or write was made

from/to the result memory. The user now has the passibility of hav;ng an inte­

ger or octal output as the next response will be:

DO YOU WISH INTEGER OR OCTAL VALUES DISPLAYED? (Type INT OR OCT):

If the input ;s N no output will be given when the m;croprogram execut;on is

started.

The next response will be:

DUMP RES. MEM DN FILE CORRDATA? (TYPE Y OR N):

Here the user has the passibility of storing the data from the simulated result

memory on file which can be used for comparison with data from the correlator

or CORRTEST function ARITEST. This is particularly useful when developing new

programs or for making correlator hardware tests. At the end of a successful

simulation the program then genera tes :

NO PROGRAM ERRORS WERE DETECTED

CPU-TIME IN CORRELATOR IS nn USEC

Where nn is the real time CPU time consumption in the physical correlator.

The last response from the program is

CONTINUE OF SIMULATION OF NEXT TIME AVERAGE? (TYPE Y OR N):

Thus the user has the possibility of simulating any number of time averages.

- 39 -

XII SIMULATION OF CORRELATOR ARITHMETIC, USE OF FUNCTION ARITEST

The function ARITEST simulates the arithmetical hardware see tian of the

correlator for fixed programs and uses the same registers as defined for the

basic subroutines, see appendix A.

Af ter intering ARITEST the program will respond with:

START ON SUBROUTINE FOR SIMULATION OF DATA PROCESSING

PRESENT PROGRAM VERSION CONSISTS OF FOLLOWING PROGRAMS:

PROG l: POWER PROFILE PROGRAM (VERSION l)

PROG 2: POWER PROFILE PROGRAM (VERSION 2)

PROG 3: SINGLE PULSE (NO. OF LAGS .EQ. NO. OF SAMPLES)

PROG 4: SINGLE PULSE (NO. OF LAGS .LE. NO. OF SAMPLES)

PROG 5: MULTI PULSE PROGRAM

PROG 6: CROSS CORRELATION (NO. OF LAGS. . EQ. NO . OF SAMPLES)

PROG 7: CROSS CORRELATION (NO. OF LAGS. .LE. NO . OF SAMPLES)

PROGRAM NO.?:

The program no. can now be entered (i.e. 1 to 7). The next response is:

GIVE COMMAND (~IN, ~XIT. ~IST, ~ONTINUE)

(_ denotes the necessary character input). The input parameters have the same

meaning as described in PROTEST.

After C has been given the next response is:

PRINT OF RESULTS? (TYPE y OR N):

If the input ;s y the next response is:

00 YOU WISH INTEGER OR OCTAL VALUES PRINTEO? (TYPE INT OR OCT):

If aCT is chosen only the computed results will be printed in octal. All

other outputs will be given in integer format.

The next response will be:

DISPLAY OF RESULTS? (TYPE Y OR N):

- 40 -

If the input is Y the program will respond with:

DO YOU WISH INTEGER OR OCTAL VALUES OrSPLAYED? (TYPE INT DR OCT):

The next response is:

DUMP DATA ON FILE CORRDATA? (TYPE Y OR N)

If the input ;s N then the program will respond with:

COMPARISON WITH DATA ON FILE CORRDATA? (TYPE Y DR N):

Here a camparison with the results from PROTEST can be made. After the simu­

lation has been made the last response will be:

CONTINUE OF SIMULATION OF NEXT TIME AVERAGE? (TYPE Y OR N):

Thus the user has the passibility of simulating any number of time averages.

ACKNOWLEDGEMENT

I would like to thank the EISC~r Scientific Association for sponsering

this work and to all of the staff in Tromsö for their help.

- 41 -

XIII REFERENCES

l: TERRANCE HO:

Further Literature:

HANS-JöRGEN ALKER:

TERRANCE HO

HANS-JöRGEN ALKER:

TERRANCE HO:

TERRANCE HO:

"INSTRUCTION MANUAL FOR EISCAT DIGITAL CORRELATOR"

(REVISED)

EISCAT Technical Nates No. Bl/26, 19B1

"A PROGRAMMABLE CORRELATOR HODULE FOR THE EISCAT

RADAR SYSTEM".

EISCAT Technical Nates No. 79/11, 1979

"SCIENTIFIC PROGRAMMING OF THE EISCAT DIGITAL

CORRELATOR. (REVISED)

EISCAT Technical Nates No. Bl/24, 19B1

"POCKET MANUAL FOR PROGRAMMING THE EISCAT DIGITAL

CORRELATOR.

EISCAT Technical Nates No. Bl/2B, 19B1

"STANDARO SUBRDUTINES ANO PROGRAMS FOR EISCAT

DIGITAL CORRELATOR.

EISCAT Technical Nates No. Bl/27, 19B1

APPENDIX A

The parameters which have to be defined for the basic subroutines are

given here. Nate that when using ARITEST the statusword must a150 be defined.

A dummy correlator IDENT-CODE can be given in order to define the statusword.

- 42 -

IMICRO-PROGRAM FOR DIGITAL CORRELATOR I
AU IOR: TERRANCE HO DATE: 6/8/80

PROGRAM NAME: POWER PROFILE SU8ROUTINE (VERSION I)

FILE-NAME (NORD 10): PROG0:0ATA

PROGRAM DESCRI PTION:
N-I 2 2

DATA CHANNEL l ZERO LAG ESTIMATlON Kr =~(Xi+(N+O-I)(r-I)+ Y;+(N+O-I)(r-I))
;=0

N-I
DATA CHANNEL Z MEAN VALUE ESTIMATlON Mr =~(Xi+(N+O-I)(r-I)+ Y;+(N+O-I)(r-I))

; =0
WHERE N=NO. OF SAMPLES IN RANGECELL

O=OVERLAP FACTOR (=1 FOR NO OVERLAPPING ANO"O FOR OVERLAPPING)
r=I,2, ... ,M RANGECELLS FOR TIME AVERAGE

RESTRICTIONS
MINIMUM NO. OF SAMPLES IN RANGEDATA: I

NOTES--
l. The formulae above are given with respect to the way in which the X, Y samples

are read from the buffer memory.
2. The Q registers of the APB, APM processors must be defined with the start

addresses of the buffer, result memories in the main program.
3. The LCRl register must be reloaded with the AP8RS(15) register and the LCR2

register must be reloaded with the APBRS(14) register in the main program.

START ADDRESS FOR PROGRAM: l

PROGRAM- MEMDRY LDCATIONS USED: l - 6

- 43 -

IMICRO-PROGRAM FOR DIGITAL CORRELATOR I
AUTOR: TERRANCE HO DATE: 6/8/80

PROGRAM NAME: POWER PROFILE SUBROUTINE (VERSION 1)
FILE-NAME (NORD 10): PROG~:OATA

REG ISTER NAME

SAR
AP8 RS(lS)
AP8 RS(14)
APB RS(13)

APB RS(12)
API1 RS(15)

REG ISTER ADDRESS

4

16,15
16,14
16,13

16,12
17,15

PARAMETER

START AOORESS OF SUBROUTINE
NO. OF SAMPLES-! IN RANGECELL
NO. OF RANGECELLS-l FOR TIME AVERAGE
RANGECELL INCREMENT (=1 FOR NO OVER­
LAPPING OF RANGECELLS)
SAMPLE INCREMENT (NORMALLY=I)
INCREMENT (=1)

- 44 -

IMICRO-PROGRAM FOR DIGITAL CORRELATOR I
AUTOR: TERRANCE HO DATE: 6/8/80

PROGRM1 NAME: POI~ER PROFILE SUBROUTINE (VERSION 2)
FILE-NAME (NORD 10): PROGI:DATA

PROGRAM DESCRIPTION:
N-I 2 2

DATA CHANNEL 1 ZERO LAG ESTIMATlON Kr =~(Xi+(N+D-I)(r-I)+ Y;+(N+D-I)(r-I))
i =~_I

DATA CHANNEL 2 MEAN VALUE ESTIMATlON Mr =~(Xi+(N+D-I)(r-I)+ Yi+(N+D-I)(r-I))
;=0 N-I

DATA CHANNEL 1 MEAN VALUE X ESTINATION I-Ix,r =~X;+(N+D-I)(r-I)

~:2
DATA CHANNEL 2 MEAN VALUE y ESTIMATlON M -~YY.r - L- i+(~+D-I)(r-l)

;=0,
f!"ERE N=ND. OF SAMPLES IN RANGECell

D=OVERLAP FACTOR (=1 FOR NO OVERLAPPING AND~O FOR OVERLAPPING)
r=I.2 •.... ,M RANGECELLS FOR TIME AVERAGE

RESTRICTIONS
MININUM NO. OF SAMPlES IN RANGEDATA: 1

NDTES
l. The formulae above are given with respect to the way in which the X. y samples

are read from the buffer memory.

2. The Q registers of the APB, APM processors must be defined with the start
addresses of the buffer, result memor;es in the main program.

3. The LCRl register must be reloaded with the APBRS(15) register and the LCR2
registel' must be reloaded with the APBRS(14) register in the ma;" program.

4. In a particular rangecell the zera lag estimation Kr and Mr are computed first

and the mean value estimation MX and My second.,r ,r

START ADDRESS FOR PROGRAM: 1

PROGRAM- MEMORY LOCATIONS USED: 1 - 6

- 45 -

IMICRO-PROGRAM FOR OIGITAL CORRELATOR I
AUTOR: TERRMICE HO DATE: 6/8/80

PROGRAM NAM E: POl~ER PROFILE SUBROUTlNE (VERSION 2)
FILE-NAME (NORD 10): PROGI:DATA

REG ISTER NAME

SAR
APB RS(15)
APB RS(14)
APB RS(13)

APB RS (12)
API~ RS(15)

REG ISTER ADDRESS

4

16,15
16,14
16,13

16,12
17,15

PARAMETER

START ADDRESS OF SUBROUTINE
NO. OF SAMPLES-I IN RANGECELL
ND. DF RANGECELLS-I FOR TIME AVERAGE
RANGECELL INCREMENT ("I FOR NO OVER­
LAPPING OF RANGECELLS)
SAMPLE INCREMENT (NORMALLY"I)
INCRE~1ENT ("I)

- 46 -

IMICRO-PROGRAM FOR DIGITAL CORRELATOR I
AUTOR: TERRANCE HO DAT E: 6/8/80

PROGRAM NAME: SINGLE PULSE SU8ROUTlNE (NO. OF LAGS .EQ. NO. OF SAfIPLES)
FILE-NAME (NORD 10): PROG2:DATA

PROGRAM DESCRIPTION:
DATA CHANNEL 1

J
N-L-I

Re:KL,r =~ (Xi+(N+D-I)(r-I)X;+L+(N+D-I)(r-I)+ Yi+(N+D-I)(r-l)Y;+L+(N+D-I)(r-I»
;=0

DATA CHANNEL 2
N-L-I

Im:KL,~= ~ (Xi+L+(N+D-l)(r-I)Yi+(N+D-I)(r-I)- X;+(N+D-l)(r-I)Yi+L+(N+D-l)(r-I»
; =0

liHERE N=NO. OF SAMPLES IN RANGECELL
L=O.1,2 •... ,N-l

D=OVERLAP FACTOR (=1 FOR NO OVERLAPPING AND~O FDR OVERLAPPING)
r=I,2, ... ,M RANGECELLS FDR TIME AVERAGE

RESTR ICTI ONS
MINIMUM NO. OF SAMPLES IN RANGEDATA: 1

NOTES
l. The formulae above are given with respect to the way in which the X, Y samples

are read from the buffer memory.
2. The Qregisters of the APS, APM processors must be defined with the start

addresses of the buffer, result memories in the main program.

3. The LCRl register must be reloaded with the AP8RS(15) register and the LCR2
register must be reloaded with the APBRS(14) register in the main program.

START ADDRESS FOR PROGRAM: 1

PROGRAM-MEMORY LOCATIONS USEO: 1 - 6

- 47 -

IMICRO-PROGRAM FOR DIGITAL CORRELATOR I
AUTOR: TERRANCE HO DATE: 6/8/80

PROGRAM NAME: SINGLE PULSE SUBROUTINE (NO. OF LAGS .EQ. NO. OF SAMPLES)
FILE-NAME INORD 10): PROG2:0ATA

REGISTER NAME
SAR
APB RS(15)
APB RS(14)
APB RS(13)

APB RS(12)
APB RS(ll)
APM RS(15)

APM RS(14)
APM RS(13)

REGISTER ADDRESS
4

16,15
16,14
16,13

16,12
16,11
17,15

17,14
17,13

PARAMETER
START AOORESS OF SUBROUTINE
NO. OF SAMPLES-1 IN RANGECELL
NO. OF RANGECELL-1 FOR TIME AVERAGE
RANGECELL INCREMENT (=1 FOR NO OVER­
LAPPING OF RANGECELLS)
SAMPLE INCREMENT (NORMALLY=I)
TEMPORARY STORAGE
RANGECELL INCREMENT (=NO. OF LAGS
COMPUTEO)
INCREMENT (=1)
TEMPORARY STORAGE

- 48 -

IMICRO-PROGRAM FOR DIGITAL CORRELATOR I
AUTOR: TERRANCE HO DATE: 6/8/80

PROGRAM NAME: SINGLE PULSE SU8ROUTINE (NO. OF LAGS .LE. NO. OF SAMPLES)
FILE-NAME (NORD 10): PROG3:DATA

PROGRAM DESCRIPTION:
DATA CHANNEL I

r 1 N-L-I
RelKL,~ =~ (X i+(N+D-I)(r-l)x;+L+(N+D-1)(r-1)+ Yi+(N+D-I)(r-I)Yi+L+(N+D-I)(r-I))

1=0

DATA CHANNEL 2
] N-L-1

Im[KL,rJ =T (X;+L+(N+D-1) (r-l) yi+(N+D-I)(r-I)- X;+(N+D_I) (r-I) yi+L+(N+D-I) (r-l))
, =0

WHERE N=NO. OF SAMPLES IN RANGECELL
l=O.1,2 •...• P P~N-l

D=OVERLAP FACTOR (=1 FOR NO OVERLAPPING AND.;O FDR OVERLAPPING)
r=I,2, ... ,M RANGECELLS FOR TIME AVERAGE

RESTRICTIONS
MINItIUM NO. OF SAt·IPLES IN RANGEDATA: l
M1NIMUM NO. OF LAGS IN RANGEDATA: 2

NOTES
1. The formulae above are given with respect to the way in which the X. y samples

are read from the buffer memory.
~. The Q registers of the APS, APM processors must be defined with the start

addresses of the buffer, result memories in the main program.
3. The LCRI register must be reloaded with the APBRS(lS) register, the LCR2

register must be reloaded with the APBRS(14) register and the LeR3 register
must be reloaded with the the APBRS(13) register in the main program.

START ADDRESS FOR PROGRAM: I

PROGRAM- MEMORY LOCATIONS USED: I - 7

- 49 -

IMICRO-PROGRAM FOR DIGITAL CORRELATOR I
AUTOR: TERRANCE HO DATE:6/B/BO

PROGRAM NAME: SINGLE PULSE SUBROUTINE (NO. OF LAGS .LE. NO. OF SAMPLES)

FILE - NAME I NORD 10): PROG3:0ATA

REGISTER NAME

SAR

APB RS(15)

APB RS(14)

APS RS(13)

APS RS(12)

APB RS(l1)

APS RS(lO)

APM RS(15)

APM RS(14)

API·I RS (13)

REG ISTER ADDRESS

4

16,15

16,14

16,13

16,12

16,11

16,10

17,15

17,14

17,13

PARAMETER

START AOORESS OF SUBROUTINE

NO. OF SAMPLES-l IN RANGECtLL

NO. OF RANGECELLS-l FOR TIME AVERAGE

NO. OF LAGS-l IN RANGECELL

RANGECELL INCREMEIIT (=1 FOR Im OVER­
LAPPING OF RANGECELLS)

SAMPLE [NCREMENT (NORMALLY=I)

TEMPORARY STORAGE

RANGECELL INCREMENT (=NO. OF LAGS
COMPUTEO)

INCREMENT (=1)

TEMPORARY STORAGE

- 50 -

IMICRO-PROGRAM FOR OIGITAL CORRELATOR I
AUTOR: TERRANCE HO DAT E: 6/8/80

PROGRAM NAME: MULTI PULS E SUBROUTINE
FILE-NAME (NORD 10): PROG4:DATA

PROGRAM DESCRIPTION:

DATA CHANNEL 1 Re[KL.~ = XS+r-IXS+L+r_l+ YS+r-IYS+L+r-1

DATA CHANNEL 2 Im[K l - X Y - X YL,r)- S+L+r-l S+r-l S+r-l S+L+r-l

LET JO=POSITIDN OF Ist PULSE
JI=SAMPLE DIFFERENCE BETWEEN Ist AND 2nd PULSE

JN_I=SAMPLE DIFFERENCE BETWEEN Ist AND Nth PULSE

WHERE S=JO.JI'J2' JN_2

L=J I -S'J2-S •...• JN_I-S IIITH THE RESTRICTION L>0

r=I.2, ...•MRANGECELLS FOR TIME AVERAGE

RESTRICTIONS
MINIMUM NO. OF ELEMENT PULSES IN PULSE GROUP: 2
MAXIMUM NO. OF ELEMENT PULSES IN rULSE GROUP: 13

NOTES--
l. The formulae above are given witn respect to the way in which the X. y samples

are read from the buffer memory.

~. The Q registers of the APB. APM processors must be defined with the start

addresses of the buffer, result memories in the main program.
3. The LCRI register must be reloaded with the AP8RS(15) register and the LCR2

register must be reloaded with the APBRS(14) register in the main program.
4. The zera lag ;s not camputed in this algorithm, therefore to calcu1ate the

number of lags computed use the formula: N(N-l)j2 where N ;s the number
of element pulses in the pulse group.

START ADDRESS FOR PROGRAM: 1

PROGRAM- MEMORY LOCATIONS USEO: 1 - 6

- 51 -

IMICRO-PROGRAM FOR OIGITAL CORRELATOR I
AUTOR: TERRANCE HO DATE: 6/8/80

PROGRAM NAME: MULTI PULSE SUBROUTlNE
FILE-NAME INORD 10): PROG4:0ATA

REGISTER NAME

SAR
APB RS(IS)
APB RS(l4)
APB RS(13)
APB RS(12)

REG ISTER ADDRESS

4

16,15
16,14 .
16,13
16,12

PARAMETER

START ADDRESS OF SUBROUTINE
NO. OF PULSES-I IN RANGECELL
NO. OF RANGECELLS-I FOR TIME AVERAGE
RANGECELL INCREMENT (NORMALLY=I)
TEMPORARY STORAGE

APB RS(I) 16,1 SA~PLE DISTANCE BETWEEN 2nd LAST
AND Ist PULSE

APB RS(O) 16,0 SAl1PLE DISTANCE BEnIEEtI LAST AND
Ist PULSE

APM RS(IS) 17,15 INCREI1ENT (=1)

- 5< -
IMICRO-PROGRAM FOR DIGITAL CORRELATOR I

AUTOR: TERRANCE HO DATE: 6/8/80

PROGRAM NAME: CROSS CORRELAT!ON SUBROUT!NE (NO. OF LAGS .EQ. NO. OF SAMPLES)
FILE-NAME (NORD 10):PROG5:0ATA

PROGRAM DESCRIPTION:

DATA CHANNEL l
r 1 N-L-l

Re l KL. rj =L (Xi+(N+D-l)(r-l)Xi+S+L+(N+D-l) (r-l)+ y i+(N+D-l) (r-l) y i+S+L+(N+D-l)(r-l))
i=D

DATA CHANNEL 2
r 1 N±l

Im lKL, r: = iD (Xi+S+L+(N+D-l)(r-l) yi+(N+D-l) (r-l f Xi+(N+D-l) (r-l) yi+S+L+(N+D-l) (r-l))

WHERE N=NO. OF SAMPLES IN RANGECELL
L=O,l,2" ..• N-l

S=SAMPLE DIFFERENCE BETWEEN THE TWO SETS OF DATA
D=DVERLAP FACTOR (=1 FOR NO OVERLAPPING AND,,;O FOR OVERLAPPING)
r=I.2 •...• MRANGECELLS FOR TIME AVERAGE

RESTRI CT! ONS
MINIMUM NO. OF SAMPLES IN RANGEDATA: 1

NOTES
l. The formulae above are given with respect to the ~Iay in which the X, Y samples

are read from the buffer memory.
2. The Q registers of the APS, APM processors must be defined with the start

addresses of the buffer, result memories ;n the main program.
3. The LCRl register must be reloaded with the APBRS(15) register and the LCR2

register must be reloaded with the APBRS(14) register in the ma;n program.

4. Only half of the correlation function can be obtained with this scheme.
5. The Single Pulse autocorrelation scheme (see PROG2:DATA) can be obtained

by setting APBRS(12)=O.
START AODRESS FOR PROGRAM: l

PROGRAM- MEMORY LOCATIONS USED: 1 - 8

- 53 -

IMICRO-PROGRAM FOR OIGITAL CORRELATOR I
AUTOR: TERRANCE HO DATE;6/B/BO

PROGRAM NAM E: CROSS CORRELATION SUBROUTINE (NO. OF LAGS. EQ. NO. OF SAMPLES)
FILE-NAME (NORD 10): PROG5:DATA

REGISTER NAME REGISTER ADDRESS PARAMETER

SAR 4 START ADDRESS OF SUBROUTINE
APB RS(15) 16,15 NO. OF SAMPLES-I IN RANGECELL
APB RS(14) 16,14 NO. OF RANGECELLS-I FOR TIME AVERAGE
APB RS(13) 16,13 RANGECELL INCREMENT (=1 FOR NO OVER-

LAPPING OF RANGECELLS)
APB RS(12) 16,12 ST~RT ADDRESS OF 2nd FIELD-START

ADDRESS OF Ist FIELD
APB RS(l1) 16,11 SAMPLE INCREMEtIT (NORMALLY=I)
APB RS(IO) 16,10 TEMPORARY STDRAGE
APM RS(15) 17,15 RANGECELL INCREMENT (=NO. OF LAGS

COMPUTED)
APM RS(14) 17,14 INCREI~ENT (=1)
APM RS(13) 17,13 TEMPDRARY STORAGE

- 54 -

IMICRO-PROGRAM FOR DIGITAL CORRELATOR I
AUTOR: TERRANCE HO DATE: 6/8/80

PROGRAM NAME: CROSS CORRELATION SUBROUTINE (NO. OF LAGS .LE. NO. OF SAfIPLES)
FILE-NAME (NORD 10): PROG6:0ATA

PROGRAM DESCRI PTION:
DATA CHANNEL 1

!' LN-L-I
Re KL,r - ~_ (X;+(N+O-I)(r-I)X;+S+L+(N+O-I)(r-I)+ Y;+(N+O-I)(r-I)Y;+S+L+(N+O-I)(r-I))

'- j ;::::0

DATA CHANNEL 2
• . N-L-I

Im KL,r." L (X;+S+l+(N+D-I)(r-I)Yi+(N+D-I)(r-I)- X;+(tI+D-I)(r-I)Yi+S+L+(N+D-I)(r-l))
i "O

WHERE N"NO. OF SAMPLES IN RANGECELL
l=O,l,2, ... ,P P~N-l

S"SAMPLE DIFFERENCE BETWEEN THE TWO SETS OF DATA
D=OVERLAP FACTOR (=1 FOR NO OVERLAPPING AND"O FOR OVERLAPPING)
r=I,2, ... ,M RANGECELLS FOR TIME AVERAGE

RESTRICTJONS
MINIMur~ NO. OF SAflPLES IN RANGEDATA: I
MINIMUM NO. OF LAGS IN RANGEDATA: 2
rWTES--
l. The formulae above are given with respect to the way in which the X, Y samples

are read from the buffer memory.

2. The Q registers of the APS. APM processors must be defined with the start
addresses of the buffer, result memories in the main program.

3. The LCRI register must be reloaded with the APBRS(15) register, the LCR2
register must be reloaded with the APBRS(14) register and the LeR3 register

must be reloaded with the APBRS(13) register in the main program.
4. Only half of the correlation function can be obtained with this scheme.

5. The Single Pulse autocorrelation scheme (see PROG3:0ATA) can be obtained
by settinq APBRS(Jll=O.

START ADDRESS FOR PROGRAM: 1

PROGRAM- MEMORY LOCATIONS USED: 1 - 8

- 55 -

IMICRO-PROGRAM FOR DIGITAL CORRELATOR I
AUTOR: TERRANCE HO DATE: 6/8/80

PROGRAM NAME: CROSS CORRELATION SUBROUTINE (NO. OF LAGS .LE. NO. OF SAMPLES)
FILE-NAME (NORD 10): PROG6:0ATA

REGISTER NAME REG ISTER ADDRESS PARAMETER

SAR 4 START ADDRESS OF SUBROUTINE
APB RS(15) 16,15 NO. OF SAMPLES-I IN RANGECELL
APB RS(14) 16,14 NO. OF RANGECELLS-l FOR TIME AVERAGE
APB RS(13) 16,13 NO. OF LAGS-l IN RANGECELL
APB RS(12) 16,12 RANGECELL INCREMENT (=1 FOR NO OVER-

LAPPING OF RANGECELLS),
APB RS(Il) 16,11 START ADDRESS OF 2nd FIELD-START

ADDRESS OF 1st FIELD
APB RS(IO) 16,10 SAMPLE INCREMENT (NORMALLY=I)
APB RS(9) 16,9 TEMPORARY STORAGE
API~ RS(15) 17,15 RANGECELL INCREMENT (=NO. OF LAGS

COI4PUTEO)
APM RS(14) 17,14 IrICREMENT (=1)
API4 RS(13) 17,13 TEMPORARY STORAGE

EISCAT publieations

F. du Castel, O. Holt, B. Hultqvist, H. Kohl and M. Tiuri:

A European Incoherent Scatter Facility in the Auroral Zone (EISCAT).

A Feasibili ty Study ("The Green Report") June 1971. (Out of print) •

o. Brattcng and A. Haug:

Model Ionosphcre at High Latitude, EISCAT Feasibi1ity Study, Report

No. 9.

The Auroral Observatory, Tromsö July 1971. (Out of print).

A European Ineoherent Scatter Facility in the Auroral Zone, UHF

System and Organization ("The Yellow Report") , June 1974.

EISCAT i\nnual Report 1976. (Out of print).

P.S. Kildal and T. Hagfors:

Balance betwecn investment in reflector and feed in the ~lF cylindri­

cal antenniJ.

EISCAT Technical Nates No. 77/1, 1977.

T. Hagfors:

Least mean square fittiog of data to physical medels.

EISCAT Technical Nates No. 78/2, 1978.

T ~ Hagfars :

The effect of iee on an antenna ref1ector.

EISCAT Technica1 Hetes No. 78/3, 19"78.

T. Hagfars:

The bandwidth of a linear phased array with stepped delay correclions.

EISCAT Technical Notes No. 78/4, 1978.

Data Group meeting in Kiruna, Sweden, 18-20 Jan. 1978

EISCAT "jpetings No. 78/1, 1978

EISCAT An~uul Reporl 1977

H-J. A1ker:

Measurement princip1es in the EISCAT system

EISCAT Technica1 Notes No. 78/5, 1978

EISCAT Data Group 'meeting in Tromsö, Norway 30-31 May, 1978

EISCAT Meetings No. 78/2, 1978.

P-S. Kildal:

Discrete phase steering by permuting precut phase cables.

EISCAT Technica1 Notes No. 78/6, 1978

EISCAT UHF antenna acceptance test.

EISCAT Technical Notes No. 78/7, 1978.

P-s. Kildal:

Feeder elements for the EISCAT VHF parabolic cylinder antenna.

EISCAT Tecrulical Notes No. 78/8, 1978.

H-J. A1ker:

Program CORRSIM: System for program deve10pment and software

simulation of EISCAT digital correlator, User's Manual.

EISCAT Tech~ical Notes No. 79/9, 1979.

H-J. A1ker:

Instruction manual for EISCAT digital correlator.

EISCAT Technical Notes No. 79/10, 1979

H-J. Alker:

A programmable correlator module for the EISCAT radar system.

EISCAT Technica1 Notes No. 79/11, 1979.

T. lio and H-J. A1ker:

Scientific programndng of the EISCAT digital correlator.

EISCAT Technical Notes No. 79/12, 1979.

S. Westeriund (editor):

Proceedings EISCAT Annual Review Meeting 1969. Part I and II,

Abisko, Sweden, 12-16 March 1979.

EISCAT Meetings No. 79/3, 1979.

J. Mucdin:

EISCAT UHF Geometry.

EISCAT Technical Notes No. 79/13, 1979.

T. Hagfocs:

Transmitter Polarizatian Control in the EISCAT UHF Systew.

EISCAT Technical Nates No. 79/14, 1979.

B. Törustad:

A dcscriplian of the assembly language for the EISCAT digital

correlator.

EISCAT Technical Nates No. 79/15, 1979.

J. Murdin:

Errors in incoherent scatter radar measuremcnts.

EISCAT Technical Nates No. 79/16, 1979.

EISCA'r Digital eor relator. TEST MANUAL.

EISCAT I'cchnical Nates No. 79/17, 1979.

G. LCJeur.e:

A program library for incoherent scatter calculat~on.

EISCAT ~chnical Notes No. 79/18, 1979.

K. Folkestild:

Lectures for EISChT Personnel, Volume I

EISCAT Tcchnica1 Nates No. 79/19, 1979.

Sveln l,. l:<valvik:

Correlator Buffer-Memory for the EISC~T Radar system

EISCA Tech~lcal Nates. No. 80/20.

P-S. Kilda1:

EISCAT VHF Antenna Tests

ErSCAT Technical Notes No. 80/21

J. Armstrong

EISCAT Experiment Preparation Manual

EISCAT Technica1 Notes No. 80/22

A. Farmer

EISCAT Data Gathering and Dissemination

EISCAT Tcchnical Nate 80/23

Terrance Ho and Han5-J~rgen A!ker

Scientific Programming of The EISCAT Corre1ator (revised)

EISCAT Technica1 Note 81/24

