

GUISDAP Documentation

M. S. Lehtinen* and A. Huuskonen**

* Sodankylä Geophysical Observatory, Sodankylä, Finland

** Finnish Meteorological Institute, Helsinki, Finland

1. Data file format

A datafile contains the parameter block, correlator status word and correlator dump from one integration period. They are stored in binary Matlab files as three variables:

<code>d_parbl</code>	parameter block, column vector
<code>d_status</code>	correlator status word
<code>d_data</code>	correlator dump, column vector

The name of the data file gives the dump time in seconds from the beginning of year. The name must always be 8 character long and is padded with zeroes from the left, when necessary. Thus a measurement on the New Years Day at 1 UT is written to a file with name `00003600.mat`. The name convention is chosen so that the same names are usable in various systems for which Matlab is available (MAC, UNIX, MS-DOS and Vax VMS). Of these the most restrictive is MS-DOS. For safety reasons the extension part is always assumed to be `.mat`.

2. Result file format

The analysis result file contains the parameters with errors and the necessary control information so that the post prosessing of results is possible. The file is a binary Matlab file and the names of the variables are started with the prefix **r_**. In the following the parameters appear in the order $N_e, T_i, T_e/T_i, \nu_{in}, v_i$ and are denoted by $p_1 \dots p_5$.

variable	size	contents
r_ver	(1,1)	version number of the GUISDAP program
name_expr	(1,1)	Name of the experiment
name_site	(1,1)	measurement site
r_time	(2,6)	start and end times of the integration period in order: year, month, day, hour, minutes, seconds
r_az	(1,1)	antenna azimuth (from parameter block)
r_el	(1,1)	antenna elevation (from parameter block)
r_Pt	(1,1)	power of the transmitter (from parameter block)
r_m0	(1,2)	masses of ions in the fit in atom mass units
r_range	(Ng,1)	range in km to the scattering volume
r_h	(Ng,1)	altitude in km of the scattering volume
r_param	(Ng,5)	result of the fit, $p_1 \dots p_5$
r_error	(Ng,15)	errors and correlations of the parameters, order: $\Delta p_1 \dots \Delta p_5, \text{Corr}(p_1, p_2), \text{Corr}(p_2, p_3), \text{Corr}(p_3, p_4), \text{Corr}(p_4, p_5), \text{Corr}(p_1, p_3) \dots \text{Corr}(p_4, p_5)$
r_res	(Ng,2)	residual of the fit with standard deviation
r_status	(Ng,1)	status of the fit, values: 0 = fit OK 1 = max number of iterations exceeded 2 = No fit done, because data too noisy
r_dp	(Ng,1)	ion composition $[\text{O}^+]/N_e$
r_apriori	(Ng,5)	<i>a priori</i> values for $p_1 \dots p_5$
r_apriorierror	(Ng,5)	<i>a priori</i> errors for $p_1 \dots p_5$
r_pp	(Npp,1)	Power profile with $T_e/T_i = 1$ and neglecting Debye term
r_pprange	(Npp,1)	Range to power profile points
r_XMITloc	(1,3)	transmitter location [latitude ($^{\circ}$ N), longitude ($^{\circ}$ E), altitude (km)]
r_RECloc	(1,3)	receiver location [latitude ($^{\circ}$ N), longitude ($^{\circ}$ E), altitude (km)]
r_SCangle	(1,1)	half of the scattering angle (radians)