& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

GUISDAP Documentation
M. S. Lehtinen* and A. Huuskonen

* Sodankyla Geophysical Observatory, Sodankyla, Finland
** Finnish Meteorological Institute, Helsinki, Finland

Running the Analysis package

The analysis of incoherent scatter experiment with GUISDAP requires certain hardware and software facil-
ities. Especially, the following are needed:

- A Matlab licence (and computer)
- An initialization file for the experiment.
- The measurements as EISCAT raw data files or binary Matlab files on the disk.

- A startup program for the analysis.

A basic startup program

The first startup program (CP1K_demo1.m) shows a simple example how to invoke the GUISDAP package.
It includes all the necessary parameters and a basic collection of the optional ones.

The first parameter (name_expr) contains the name of the experiment. The names are intrinsic to the
GUISDAP package and need not be the same as those used in EISCAT experiments. However, the names
are chosen so that they resemble their EISCAT counterparts. The next parameter (name_site) shows the
measurement site, using the EISCAT convention. The allowed values are >T’, ’K’, ’S? and ’V’. The next
two parameters give the data and result directories.

The parameters analysis_start and analysis_end specify the time interval to be analyzed. Each is a
vector with six elements, which give the year, month, day, hour, minutes and seconds of the time instant.
The next parameters (analysis_integr and analysis_skip) control the post integration of the data and
are given in seconds. These vectors are used ina a cyclical manner. If the _skip parameter is not given, the
skips are assumed to be equal to zeroes.

The meaning and use of the previous parameters is self-evident. The next parameter brings in new possibilies
which are not normally included in the analysis packages. The parameter analysis_altit defines a set of
altitudes, which are the border lines for the analysis gates. The i"" gate in the analysis uses all those crossed
products for which the center point of the range ambiguity functions is between altitudes analysis_altit(i)
and analysis_altit(i+1). So the altitude (or range) dimension is handled by the package just like the
time integration. One specifies the interesting event, one dimension in time and the other in altitude, and
the program finds all measurements falling between the specified limits. It is possible to use ranges instead
of altitudes. If analysis_range is given the parameter analysis_altit does not have any effect. This
possibility could be useful in scanning experiments.

The vector analysis_control gives some control on how the fitting is done. It contains four elements (The
standard values are given in parenthesis):

1 If the error of electron density, evaluated at the start of iteration, exceeds the limit, no fit is done to
the data. (00).

2 The iteration stops, when the step for all parameters is shorter than the limit (0.01)
3 Gives the maximum number of iterations done (6)
4 Controls the way the variances are calculated. Normally they are calculated experimentally during

the integration (1) but it is possible to used theoretical estimates (2).

1

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

The last parameter (display_figures) controls the graphical output. The following plots are shown, when
the corresponding element is set true

1 After the postintegration has been done, and data scaled by the calibration measurements, and back-
ground subtracted, the correlator dump (real part) is displayed.

2 Before proceeding to the analysis, the program calculates raw electron density profile from all zero lag
measurements, including the Debye corrections and using the a prior: temperature ratio model.

3 For each altitude range, a figure containing the measurement with the fitted curve is shown for a
visual check of the fit quality. The plot also includes a separate display of the a prior: parameters
with the fitted parameters.

4 After all gates have been analyzed, a figure displaying the fit results is shown.

The last command in the startup program (an_start) then invokes the analysis itself.

/geo/gmt/askoh/gulsda p/m152/CP1K_demol.m
AYANIA AN 7%7%%7%%7%%7%%7%7%%7%%7%%7%%7%7%%7%%7%%7%%7%7%%7%%7%%7%%

2 % GUP ver. 1.50 Helsinki March 2, 1994

3 % copyright Asko Huuskonen, Markku Lehtinen, %
4 N R R A A R R R A A AR R A R AR A A A A AN A A A AN A A A A A AR AR
5

6 start_GUP

7

8 name_expr=’CP1K’; % Experiment name

9 name_site=’T’; % Site

10 data_path=[path_GUP ’demodata/CP1K/’]; % data directory

11 result_path=path_tmp; % result directory

12

13 analysis_start=[1993 2 16 11 00 0]; % Start time

14 analysis_end= [1993 2 16 11 15 0]; % End time

15

16 analysis_integr=[180];

17 analysis_skip =[0]1;

18

19 analysis_altit=[90:3:130, 135:5:170, 180:10:240 260:20:600] ;

20 % analysis_range=[90:3:130, 135:5:170, 180:10:240 260:20:600] ;
21

22 analysis_control=[.50 .01 6 1];

23 % analysis_control(l) : if error of Ne exceeds this, no fit done
24 % analysis_control(2) : iteration stopped, when step below this
25 % analysis_control(3) : max number of iterations

26 % analysis_control(4) : variance calculation

27

28 display_figures=[11 1 1];

29 % display_figures(1l) : data dump shown

30 % display_figures(2) : raw electron density shown

31 % display_figures(3) : data and fitted curve for each fit shown
32 % display_figures(4) : results shown after each dump

33

34 an_start

Explicit specification of modulations

The parameters included in CP1K_demol.m do not always give a full control on the altitude integration.
For instance, the gate size was chosen to 5 kilometers around the 150 km altitude. The gates then include
1-2 multipulse ACF’s and possibly one power profile measurement and the resulting altitude weighting 1s
comparable to the gate size. However, this is not the case, when the center point of a long pulse measurement
just happens to fall within a gate. The range ambiguity functions of the long pulse data are much wider and
idea of integrating over roughly five kilometers does not come true.

To solve that kind problems, the package contains a way of defining explicitely what modulations are used
within each of the gates defined by analysis_altit. The parameter is called analysis_code. If one wants
to use only modulation number 1 (alternating code in CP1), one just gives a value of 1 to each gate. In the
example file (CP1K_demo2) modulations 1 and 2 are used in the first fourteen gates and modulation 3 in the
remaining ones. The _altit variable also demonstrates that is is possible to make downward steps, which
are skipped over in the analysis. The _code variable contains a zero in the corresponding place. This makes
it possible to analyze the same data with varying altitude integrations during the same run.

The last feature demonstrated here is how _integr and _skip variables are used.

/geo/gmt/askoh/gulsda p/m152/CP1K_demo2.m
Ll Ll L R T R R At A A A L LA R LR L AR AN AN AR RN RN R LR LA L AL

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

2 % GUP ver. 1.50 Helsinki March 2, 1994 %
3 % copyright Asko Huuskonen, Markku Lehtinen, %
4 %%%%%%%%%%7%%7%7%%7%%7%%7%%7%7%%7%%7%%7%%7%7%%7%%7%%7%%7%7%%7%%7%%7%%
5

6 start_GUP

7

8 name_expr=’CP1K’; % Experiment name

9 name_site=’T’; % Site

10 data_path=[path_GUP ’demodata/CP1K/’]; % data directory

11 result_path=path_tmp; % result directory

12

13 analysis_start=[1993 2 16 11 00 0]; % Start time

14 analysis_end= [1993 2 16 11 15 0]; % End time

15

16 analysis_integr=[180 120 120];

17 analysis_skip =[0 30 30];

18

19 analysis_altit=[110:5:180 140:20:600];

20 analysis_code= [12*ones(1,14),0, 3*ones(1,23)];

21 % description of code numbers

22 % 1: alternating code ACF including the zero lag from power profile
23 % 2: F-region power profile

24 % 3: long pulse

25

26 display_figures=[11 1 1];

27

28 an_start

How to fit ACF’s instead of sets of crossed products?

The GUISDAP program is built so that the concept of autocorrelation function is not necessary at all.
Instead of ACF’s; the fits are done to a set of measurements (crossed products), which may all have different
weightings in lag and range (different two-dimensional ambiguity functions) and may originate from different
altitudes, provided that the center points fall to the specified altitude range. Of course, it is possible to define
sets which correspond to classical autocorrelation functions and to analyze experiments like CP1K gate-by-
gate so that data originating from different modulations are not used in the same fit. One parameter
(analysis_classic) is included in the package to facilitate this kind of analysis. When this parameter has
a non—zero value (is true in Matlab) the GUISDAP program automatically produces such control parameters
that all ACF’s are analyzed between the lowest and highest altitudes specified in analysis_altit. This
kind of analysis is shown in the third demo file (CP1K_demo3.m)

/g eo/gmt/askoh/guisda p/m152/CP1K_demo3.m
1 AAAAAA N AN A AN 7%7%%7%%7%%7%%7%7%%7%%7%%7%%7%7%%7%%7%%7%%7%7%%7%%7%%7%%

2 % GUP ver. 1.50 Helsinki March 2, 1994

3 % copyright Asko Huuskonen, Markku Lehtinen, %
4 %%%%%%%%%%7%%7%7%%7%%7%%7%%7%7%%7%%7%%7%%7%7%%7%%7%%7%%7%7%%7%%7%%7%%
5

6 start_GUP

7

8 name_expr=’CP1K’; % Experiment name

9 name_site=’T’; % Site

10 data_path=[path_GUP ’demodata/CP1K/’]; % data directory
11 result_path=path_tmp; % result directory

12

13 analysis_start=[1993 2 16 11 00 0]; % Start time
14 analysis_end= [1993 2 16 11 15 0]; % End time
15

16 analysis_integr=[180];

17 analysis_skip =[0]1;

18

19 analysis_altit=[90 600];

20 analysis_classic=1;

21

22 display_figures=[11 0 1];

23

24 an_start

Integration definition file for Nigel Wade’s integration package

The input files may be either binary Matlab files; which each contain one (integrated) dump possibly with
variance estimates, or EISCAT raw data files. GUISDAP checks the data directory and, if raw data files are
found, produces automatically an integration definition file and then invokes theintegration facility by a mex
call. To use all the option of Nigel Wade’s package, it is necessary to make a separate integration definition
file and to give the name of the file to GUISDAP, as in the example below. Then there is no need to give
the data_path, analysis start and end times and integration strategy.

3

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

/geo/gmt/askoh/gulsda p/exps/CP1K/An_demo4.m
AYANANAN AN

1 AN NSNS AN NS AN A AN AN AN A AN A A AN A AN A AN A AN A AN S A AN A AN A AN A
2 % GUP ver. 1.50 Helsinki March 2, 1994 %
3 % copyright Asko Huuskonen, Markku Lehtinen, %
4 %%%%%%%%%%7%%7%7%%7%%7%%7%%7%7%%7%%7%%7%%7%7%%7%%7%%7%%7%7%%7%%7%%7%%
5

6 start_GUP

7

8 name_expr=’CP1K’; % Experiment name

9 name_site=’T’; % Site

10

11 integ_deffile=[path_GUP ’exps/CP1K/integdef’];

12 result_path=path_tmp; % result directory

13

14 analysis_altit=[90 600];

15 analysis_classic=1;

16

17 display_figures=[11 0 1];

18

19 an_start

What parameters are fitted?

The user can control the fitting process by changing the a prior: model ionosphere. The model ionosphere
is supplied by the function ionomodel.m. The function receives a set of altitudes as input and must give a
value for the following parameters in the units given and also their uncertainties, if required.

1 N, Electron density in m™3

2 T; Ion temperature in K

3 T./T; Electron to ion temperature ratio

4 v; Ion velocity in ms™!

5 Vin Ton-neutral collision frequency in Hz
6 [OT]/N. Ton composition

The a priori uncertainties give for the user a way to control the analysis. The package always fits the first
five parameters. For each parameter, the specified uncertainty puts a limit how much the fitted parameter
value can deviate from the a priori value. When the uncertainty is small, the parameter will not change and
it 1s a classical fixed parameter. On the other hand, when the uncertainty is large, the parameter is free to
change and corresponds to a classical fitted parameter. However, the uncertainty can have any value between
these extremes and so a certain parameter can be allowed to vary to some extent, but not completely freely.
When considering whether an uncertainty 1s small or large, one has to compare it with the a posterior: error
of the parameter in a fit where the parameter would be allowed to change freely. If the a priori uncertainty
1s significantly smaller than that, the fit cannot have any effect on the parameter value. In the opposite case,
the a prior: model is not important for the result. When the both are of the same order of magnitude, the
fit result is affected both by the a priori model and by the data.

The final conclusion from these considerations is that we need not treat the a priori values of the plasma
parameters and the measured crossed products separately. They all are data, some of which give two—
dimensional averages of the plasma autocorrelation function within certain uncertainties and some others
give the a priori model. The fitting process gives a new value for all those, so that we will get theoretical
values of the crossed producs and the a posterior: parameter values. If a certain data point has a large a
priori uncertainty, the a posterior: value brings us new information. Simple examples of such data points
are first five parameters, but we will also get refined estimates of the crossed products and even estimates of
crossed products which cannot be measured by the code.

The included version of ionomodel.m gives so small errors for the the temperature ratio below 110 km that
it 1s, in fact, fixed in the analysis. It is possible, and often necessary, for the user to produce his/her own
model, e.g. in the cases of electron heating in the E-region.

The composition is an example of a ’difficult’ parameters. Its determination is based on the a posteriori
distribution method and is explained separately.

/geo/gmt/askoh/gulsdap/mi52/1onomode1 m

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

2 %

3 % ’ionomodel’ is a user-supplied function which for a given set of heights

4 % outputs the plasma parameters (Ne, Ti, Te/Ti, coll, [0+]/Ne, velocity)

5 % with their a priori uncertainties. This simple example is static, a more complete

4

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

? model might use the date and time values to modify the model.
i function [apriori, apriorierror]=ionomodel(heights);
function [apriori, apriorierror]=ionomodel(heights);

global ionomodel_control

maxCollAltit=107; % Below this collision frequency is given freedom to change
minRatioAltit=107; % Above this temperture ratio is given freedom to change

% HWote: This above need not be equal, but setting minRatioAltit less than

% maxCollAltit will produce unconvergent fits, because both parameters will change.
% It is completely OK to have a range where neither is fitted.

len=length(heights);
heights=col(heights);

if nargout==2, error=1; end
if length(ionomodel_control)==0, ionomodel_control=0; end

% The global variable ionomodel_control affects the a priori electron density model.
% This feature is needed in the experiment design, where a model ionosphere is needed
% to calculate a correlator dump.
if ionomodel_control==2; % constant SHNR
ne=lel1*(heights/100).72;
else
if jonomodel_control==1; % Strong ionosphere
Elowerwidth=15; Eupperwidth=50; Emaxheight=105; Emaxdensity=6ell;
Flowerwidth=75; Fupperwidth=125; Fmaxheight=300; Fmaxdensity=1el2;
elseif ionomodel_control==-1; % Weak ionosphere
Elowerwidth=15; Eupperwidth=60; Emaxheight=115; Emaxdensity=5e10;
Flowerwidth=75; Fupperwidth=125; Fmaxheight=300; Fmaxdensity=2ell;
elseif ionomodel_control==0; % Standard ionosphere
Elowerwidth=15; Eupperwidth=60; Emaxheight=115; Emaxdensity=2ell;
Flowerwidth=75; Fupperwidth=125; Fmaxheight=300; Fmaxdensity=5ell;
end
ne=zeros(size(heights));
ind=find(heights<=Emaxheight) ;
ne(ind)=ne(ind)+Emaxdensity*exp(-((heights(ind)-Emaxheight)/Elowerwidth)."2);
ind=find(heights>Emaxheight);
ne(ind)=ne(ind)+Emaxdensity*exp(-((heights(ind)-Emaxheight)/Eupperwidth)."2);
ind=find(heights<=Fmaxheight) ;
ne(ind)=ne(ind)+Fmaxdensity*exp(-((heights(ind)-Fmaxheight)/Flowerwidth)."2);
ind=find(heights>Fmaxheight);
ne(ind)=ne(ind)+Fmaxdensity*exp(-((heights(ind)-Fmaxheight)/Fupperwidth)."1.3);
end
par=1; % Electron density
apriori(:,par)=ne;
if error, apriorierror(:,par)=10*apriori(:,par); end

par=2; % Ion temperature

ExosphericTemp=1000;

CenterHeight=140;

ScaleLength=30;
ti=ExosphericTemp*(1+(atan((heights-CenterHeight)/ScaleLength))/(pi/2))/2;
apriori(:,par)=ti;
if error, apriorierror(:,par)=10*apriori(:,par); end

par=3; % Temperature ratio

MaxRatio=1.6;

CenterHeight=140;

ScaleLength=30;
ratio=0.5+(MaxRatio-0.5)*(1+(atan((heights—-CenterHeight)/ScaleLength))/(pi/2))/2;
apriori(:,par)=max(l,ratio);
if error,

apriorierror(:,par)=10%apriori(:,par);

ind=find(heights<=minRatioAltit);

if length(ind)>0,apriorierror(ind,par)=apriori(ind,par)/100;end
end

par=4; % Ion-neutral collision frequency
apriori(:,par)=max(3578*(exp(-(heights-100)/5.8)),1);
if error,
apriorierror(:,par)=apriori(:,par)/100;
ind=find(heights<=maxCollAltit);
if length(ind)>0,apriorierror(ind,par)=apriori(ind,par);end
end

par=5; % Ion velocity
apriori(:,par)=zeros(len,1);
if error, apriorierror(:,par)=1000%*ones(len,1); end

par=6; % Ion composition
xi=[149 150 250 251];
yi=[0.0 0.0 1.0 1.0];

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

91 apriori(:,par)=inter3(heights’,xi,yi)’;
92 if error, apriorierror(:,par)=ones(len,1); end

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

The main analysis loop

The main analysis loop is executed in program an_start. The following program description explains the
main operations done in the program.

The names like radar_eq can refer either to functions or variables.

initialize the control variables (chk_par1 and other calls)

loop through postintegration periods
integrate datafiles which belong to the integration period (integr_data and integr_NW)
in case of error (OK is false) go to the next integration period
when all files have been processed (EOF is true) stop analysis

transfer the parameter block contents to GUISDAP variables (decodeparblock)
if the radar controller program has changed
load in the initialiazation file for the new radar controller program (load_initfile)
load in the GUP variables, if variances calculated by ambiguity function method(load_GUPvar)
scale spectral ambiguity function by 1pg_ND factors (scale_lpgwom)
calculate some parameters (ad_) for each signal crossed product (form_adpar)
load in files needed in the spectral calculations (spektri_init)

calculate some basic constants (constants)
end if

calculate the radar equation factors (radar_eq)
update control variables which depend on the antenna direction (chk_par2)
scale the data by the correlator algorithm factors (scale_data)
scale the data using the background and calibration measurements (also in scale_data)
display the data dump graphically, if required
subtract the background(subr_backgr)
calculate the a priori ionosphere (get_apriori)
clear the result vectors (clear_results)
do the half profile analysis (half_prof)
store results to disk (save_results)
show results graphically (plot_result)
end loop through postintegration periods

/geo/gmt/askoh/guisdap/mi52/an_start.m
A

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

2 %

3 % Main program for the data analysis. The most important operations performed are

4 % routine name: action:

5 % chk_paril 1) transforms the user supplied control parameters to internal parameters
6 % 2) checks the data source (matlab files/EISCAT .dtst files)

7 % init_graphics opens a sufficient number of figure windows and defines there sizes etc.
8 % integr_NW calls Nigel Wade’s integration package, when EISCAT .dtst files are used
9 % integr_data integrates data from Matlab files

10 % decodeparblock transfers the radar parameters (power etc) to internal GUISDAP parameters

11 % load_initfile loads the ambiguity functions etc

12 % scale_lpgwom scales the spectal amb. function with the correlator algorithm factors (1lpg_ND)
13 % radar_eq radar equation

14 % scale_data scales the data with the correlator algorithm factors (1lpg_HND)

15 % subr_backgr background subtraction to the data

16 % get_apriori the a priori model, electron density obtained from the data

17 % half_prof performs the gated analysis to the data

18 % save_results results stored to the disk

19 % plot_results displays the results

20 ./-

21 % Other routines called: globals nat_const get_ADDRSHIFT load_GUPvar GUIZARD GUISPERT form_adpar
22 % spektri_init constants chk_par2 simul_dump clear_results

23

24 t_init

25 t_start(1)

26

27 globals % Defines (nearly) all global variables

28 chk_parl

N
©

nat_const
get_ADDRSHIFT

w
o

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

31

32

33
34
35
36

37
38
39
40
41

42
43
44
a5
46
47
48
49
50
51
52
53

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
T2
73
74
75
76
T
78
79
80
8
82
83
84
85
86
87
88
89
20
91
92
93
94
95
26
97
98
29
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

init_graphics

rcprog_old=-1;
EOF=0;
while "EOF,

if a_rawdata,
[OK,EOF]=integr_NW(a_integdeffile);
elseif any(a_simul)

0K=1;E0F=1;
else
[0K,EOF]=integr_data;
end

if 0K, decodeparblock; end

Yk ke ok sk ok ok sk ok ok sk ok sk sk ok stk ok ks ks skok sk stk ok sk ok ks ok ksl ok ok sk ok ks sk ki sk sk stk ok ks ks ok sk sk ok ok ks ok ok sk skok ks ok ok
%

% At this point, an integrated complex data dump is stored in variable d_data

% It is possible to study the contents of the data by graphical and other means, e.g.
% ind=0:length(d_data)-2; plot(ind,real(d_data(ind)));

%/, e 8 e ke e ke s ke ok e ke sk o ke sk e ik o ke 3 ok sk K ok ki sk ke ok e ke ke ok ek ki ek b ok sk ko ok sk i ok s sk sk ok ok sk ok ok K Kok Kok ok

if OK,

if d_rcprog”=rcprog_old
load_initfile
if a_control(4)==2, load_GUPvar, end
if exist(’GUIZARD’)==2, GUIZARD, end
scale_lpgwom % scales the spectral ambiguity function with lpg_ND factors
form_adpar
spektri_init % Loads in plasma dispersion function table
constants
rcprog_old=d_rcprog;

end

if exist(’GUISPERT’)==2, GUISPERT, end

radar_eq % calculates the radar constant

chk_par?2

if any(a_simul),
simul_dump
else
scale_data
end

8, o ko o o ok K o R oK o oK K oK o K K o K oK o oK SRR KK R K o oK oK K K o K K o K oK o oK oK ok K o K o o oK o ok oK sk ok K o ok o o K o ok ok KoK o K
%
% How the data has been scaled by calibration, so that it appears in units of K

% ind=0:length(d_data)-2; plot(ind,real(d_data(ind))); % This would show the data
%

Yk ke ok sk ok ok sk ok ok sk ok sk sk ok stk ok ks ks skok sk stk ok sk ok ks ok ksl ok ok sk ok ks sk ki sk sk stk ok ks ks ok sk sk ok ok ks ok ok sk skok ks ok ok
subr_backgr

Yk ke ok sk ok ok sk ok ok sk ok sk sk ok stk ok ks ks skok sk stk ok sk ok ks ok ksl ok ok sk ok ks sk ki sk sk stk ok ks ks ok sk sk ok ok ks ok ok sk skok ks ok ok

%

% At this point one finds background subtracted data in vector d_data

%

o
%/, e 8 e ke e ke s ke ok e ke sk o ke sk e ik o ke 3 ok sk K ok ki sk ke ok e ke ke ok ek ki ek b ok sk ko ok sk i ok s sk sk ok ok sk ok ok K Kok Kok ok

if di_figures(1),
figure(di_figures(1)); clf; ind=find(real(d_data>-200 & d_data<2000));
plot(ind-1,real(d_data(ind))), title(’ Correlator dump, real part’);
xlabel(’Address’); ylabel(’Power [K]’); grid; drawnow

end

get_apriori(any(a_simul))
Yok ok ok ko ko kbR kbR ok R Rk Rk ok Rk ok koo sk sk ok ook ok ok Kok

% The get_apriori call calculated the raw electron density profile.
% It is stored in variables

% pp_range : range to power measurements

% pp_profile : Ne with a priori temperature ratio model
% pp_sigma : e with Te=Ti

%

o
%/, e 8 e ke e ke s ke ok e ke sk o ke sk e ik o ke 3 ok sk K ok ki sk ke ok e ke ke ok ek ki ek b ok sk ko ok sk i ok s sk sk ok ok sk ok ok K Kok Kok ok

clear_results
838 ke ke o sk ok ke sk s ok s sk s ok sk ok sk Kok K ok o ok ok o sk ok ok ok ok ok Kok K
half_prof
838k ke o sk ok sk s ok s sk s ok sk ok sk Kok K kK o ok ok o ok ok ok sk ok ok Kok
save_results
if di_figures(4), plot_result(di_figures(4),1); end
end

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

116 end
117 t_stop(1)
118 t_result

The postintegration of data

The routine integrate_data is used to postintegrate the data dumps. It uses the following criteria in the
integration

- The dump time must be greater than the integration start time (a_interval(1))

- The dump time is less or equal to the integration end time (a_interval(2))

- The transmitter must be on, 1.e. d_parbl(95) is even or zero.

During the integration, certain parameters in d_parbl are checked (numbers 1, 5...90, 92, 93, 127 and 128). If
any of these changes, a warning message 1s printed on the screen for evaluation but the integration proceeds.
The power parameters (96...99) are averaged and the bits in the status word of the result dump are set if
they were set in any of the averaged dumps. The integration time is the difference of the dump time of the
last dump and start time of the first one. Finally, the correlator dump is arranged to a complex column
vector. The program flow is as follows:

read in the list of data files (filelist) in the data directory
find all files within the integration window
if no files found, then return. If no files left, set EOF true
loop through files
read in files until one good found
initialize the averaging variables, calculate start time etc.
read in the remaining good files
if certain parameters have changed, give a warning message and continue
update the averaging variables
end loop through files
if at least one good file found
store back to original variables (d_parbl and d_data)
store variance estimates to (d_var1 and d_var?2)
display message about successful integration

/geo/gmt/askoh/guisdap/m152/integr_data.m
1 % GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

2 %

3 % Integration program for radar data in Matlab files. The files may either contain
4 % individual dumps or integrated dumps. The latter may or may not have
5 % the variance estimates of the data included.

6 % Each call to this routine performs the integation for one integration period
7 %

8 % HOTE: This is a EISCAT specific function

° %

10 % Input parameters (all global):

11 % a_ind a_indold a_interval a_year a_start a_integr a_skip a_end

12 % : specify the integration periods

13 % d_filelist : contains the names of the data files

14 % Output parameters:

15 % 0K : if true, the integration was succesful

16 % EOF : if true, the end of file was found during integration

17 % Output parameters (global):

18 % d_parbl : the parameter block returned by the integration program

19 % d_data : the integrated data vector

20 % d_varl d_var2: data variances

21 ./-

22 % See also: an_start integr_HW integrate

23 % function [0K,E0OF]=integr_data

function [0K,E0F]=integr_data

[FEECI)
RS

global d_parbl d_data d_varl d_var2 data_path d_filelist a_control
global a_ind a_indold a_interval a_year a_start a_integr a_skip a_end

NN N
© ® -1

0K=0;E0F=0;
if a_ind==0
a_ind=1;
a_interval=a_start+[0 ,a_integr(1)];
else
a_indold=a_ind;a_ind=a_ind+1; if (a_ind>length(a_integr)), a_ind=1;end

W oW oW oW W
S GRS

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

35 a_interval=a_interval(2)+a_skip(a_indold)+[0 ,a_integr(a_ind)];

36 end

37 if a_interval(2)>=a_end; EOF=1; end

38 if (d_filelist(length(d_filelist))<a_interval(1)), EOF=1; return, end,
39

40 fixed=[1, 5:90 92:93 127:128]; Y% parameters which are not allowed to change
41 averaged=[96:99]; % parameters which are averaged

42 ORed=95; % parameter which is OR’ed

43

44 for file=d_filelist(find(d_filelist>a_interval(l) & d_filelist<=a_interval(2)))’
45 filename=’>00000000’ ;str=int2str(file);filename(9-length(str) :8)=str;
16 load(canon([data_path, filename]))

47 % For compatibility with some old integrated files

48 if exist(’n_preint’), i_averaged=n_preint; end

49

50 [Md,Nd]=size(d_data);

51 if Md==1, % For compatibility with some incorrect data file, data as row vectors
52 % fprintf(’> The file contains row vectors instead of columns\n’)
53 d_parbl=d_parbl(:); d_data=d_data(:);

54 end

55

56 [secs,year]=tosecs(d_parbl(2:4));

57 if (secs”=file | year”=a_year),

58 disp(’Filename conflicts with file contents or years do not match’), keyboard
59 end

60

61 if d_parbl(95)~=0, fprintf(’ Status word is %g\n’,d_parbl(95)), end
62 dump0K= rem(d_parbl(95),2)==0 & d_parbl(95) =64;

63 if "0K & dumpOK, % initialize with the first good dump

64 first_parbl=d_parbl; % save the first parameter block

65 aver=d_parbl(averaged) ; % initialize averaging

66 status=d_parbl(0ORed) ; % save the status word

67 starttime=secs-d_parbl(94); % calculate starttime of first dump
68 if (exist(’pre_integrated’) == 1),

69 aver=d_parbl (averaged)*i_averaged; % initialize averaging
70 data=d_data;

71 if exist(’i_varl’) % The integrated file need not have variances in it
72 d_vari=i_vari(:);

73 d_var2=i_var2(:);

74 N_averaged=i_averaged;

75 else

76 d_varil=d_data.*d_data;

77 d_var2=d_data.*conj(d_data);

78 N_averaged=1;

79 end

80 else

81 aver=d_parbl (averaged) ; % initialize averaging

82 lendata=length(d_data);

83 d_data(lendata-1:lendata)=abs(d_data(lendata-1:lendata));

84 d_data=d_data(1:2:lendata)+sqrt(-1)*d_data(2:2:lendata);

85 data=d_data; % data is now a complex column vector
86 d_varl=d_data.*d_data; % for the variance calculations

87 d_var2=d_data.*conj(d_data);

88 N_averaged=1;

89 end

920 0K=1;

91 elseif OK & dumpOK, Y% update with the following files

92 if any(d_parbl(fixed) =first_parbl(fixed)),

93 disp(’ changes in the parameter block, continuing’)

94 indfixed=find(d_parbl(fixed) "=first_parbl(fixed));

95 disp(’ # , original , last dump’)

96 indfixed=fixed(indfixed);

97 disp([indfixed’ ,first_parbl(indfixed) ,d_parbl(indfixed)])

98 end

99 status=bitwiseor(status,d_parbl(ORed) ,16);

100 if (exist(’pre_integrated’) == 1),

101 aver=aver+d_parbl (averaged)*i_averaged;

102 data=data+d_data;

103 if exist(’i_var1’)

104 d_varil=d_varl+i_vari(:);

105 d_var2=d_var2+i_var2(:);

106 N_averaged=N_averaged+i_averaged;

107 else

108 d_varl=d_varil+d_data.*d_data;

109 d_var2=d_var2+d_data.*conj(d_data);

110 N_averaged=l_averaged+1;

111 end

112 else

113 aver=aver+d_parbl (averaged) ;

114 d_data(lendata-1:lendata)=abs(d_data(lendata-1:lendata));

115 d_data=d_data(1:2:lendata)+sqrt(-1)*d_data(2:2:1lendata);

116 data=data+d_data;

117 d_varil=d_varil+d_data.*d_data;

118 d_var2=d_var2+d_data.*conj(d_data);

119 N_averaged=l_averaged+1;

10

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

120 end

121 end

122 end

123

124 if 0K, % if at least one good data dump was found

125 if a_control(4)==1 & N_averaged<2,

126 fprintf(’ One file is not enough for variance determination\n’)

127 fprintf(’ Skipping this integration period\n’)

128 fprintf(’ command ’’analysi_control(4)=2’’ in the startup file will enable the analysis\n’)
129 0K=0;

130 return

131 elseif a_control(4)==1 & N_averaged<5,

132 Fprintf (7 skkskokskokskoksokskkskokokskkok WARNING okokok kR Kk kR kR ok koK kR ok Rk ok ok ko \ 1))
133 fprintf(’> %.0f files may not be enough for reliable variance determination\n’,N_averaged)
134 Fprintf (7 skkskokskokskokskokskkokokokokkok WARNING Rokokok kR Kk kR kR ok ko kR ok Rk ok ok ok \ 1))
135 end

136

137 % update parameter block, accept the last parameter block as starting point

138 d_parbl(averaged)=aver/N_averaged;

139 d_parbl(ORed)=status;

140 d_parbl(94)=secs-starttime;

141 d_data=data;

142 d_varil=d_varl-data.*data/N_averaged;

143 d_var2=d_var2-data.*conj(data)/N_averaged;

144

145 end

An alternative method is to integrate data directly from EISCAT raw data files. This is accomplished by a
max-routine integrate.mex, programmed by Nigel Wade. Function integr_NW provides an interface to the
mex call

/geo/gmt/askoh/guisdap/mi52/integr_Nw.m
A

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
2 %

3 % Interface to Nigel Wade’s integration package (mex call)

4 % Parameters:

5 % a_integdeffile : the integration definition file

6 % 0K : if true, the integration was succesful

7 % EOF : if true, the end of file was found during integration

8 % global parameters:

9 % d_parbl : the parameter block returned by the integration program
10 % d_data : the integrated data vector

11 % d_varl d_var2: data variances

12 ./-

13 % See also: an_start integr_data integrate

14 ./-

15 % function [0K,E0F]=integr_NW(a_integdeffile)

function [0K,EO0F]=integr_NW(a_integdeffile)

== e
® o

global d_parbl d_data d_varl d_var2 a_control

O
o ©

[status,d1l,N_averaged,par,d_parbl,d_data,d_varl,d_var2,scan]=...
integrate([’-id ’,a_integdeffilel);

[SIRV]
[

if status==0, O0K=1; EOF=0;
elseif status>0, 0K=1; EOF=1;
elseif status<0, 0K=0; EOF=0; fprintf(’ Error in integration\n’); return, end

NN NN
> ok W

% If no files found, the routine returns empty matrices, exit here
if length(ll_averaged)==0, 0K=0; return; end

W oNON N
o ® o -1

d_data=d_data(:);
d_varl=d_vari(:)-d_data.*d_data/N_averaged;
d_var2=d_var2(:)-d_data.*conj(d_data)/N_averaged;

w oW ow
I

if a_control(4)==1 & N_averaged<2,
fprintf(’ One file is not enough for variance determination\n’)
fprintf(’ Skipping this integration period\n’)
fprintf(’ command ’’analysi_control(4)=2’’ in the startup file will enable the analysis\n’)
0K=0;
return

elseif a_control(4)==1 & N_averaged<5,
Fprintf (7 skkskokskokskoksdkok sk ko ok kok WARNING ko kok ok kR ok ok ok ok ko koK sk kR ok kbR \ 1))
fprintf(’> %.0f files may not be enough for reliable variance determination\n’,N_averaged)
Fprintf (7 skkskokskokskokskokskkok ok kok WARNING ko kR kR koK ok ok ok ko Rk ko kR ok kbR \ 1))

end

SRR R R W W W W W
AW N RO D ® a0 0

After succesfull integration, the EISCAT parameter block is interpreted and relevant information is trans-
ferred to corresponding GUISDAP parameters:

The following parameters are read and used later in analysis

11

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

ch_az Antenna azimuth from parameter block

ch_el Antenna elevation from parameter block

ch_range Range to common volume for multistatic radars

ch_Pt Transmitter power from parameter block (W)

d_time Start and end times for data

d_rcprog Radar controller program number, needed in loading the initfiles

The rest of the parameters are stored for checking purposes. The filter widths, for example, can be compared
to the filter information read from the init file. Note that at the present version the frequencies are not
compared to their counterparts in the initialization. This is, as must be confessed, a bug which will be
repaired in the future versions. Another point to note is that the routine will not work for VHF without

changes.
ch_f channel frequency calculated from parameter block (kHz)
ch_filt Filter width and type as coded in EISCAT
ch_adc A /D conversion sample time

/geo/gmt/askoh/gulsdap/mi52/decodeparblock m

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
2 %

3 % function decodeparblock

4 % The relevant information in the parameter block is now transferred to
5 % GUISDAP variables

6 % HOTE: This is a EISCAT specific script

7 %

8 % See also: an_start, integr_data integr_NW

9

10 %global d_parbl d_rcprog d_time p_RECloc

11 %global ch_az ch_el ch_f ch_filt ch_adc ch_Pt ch_range name_site
12

13 if any(a_simul),

14 d_rcprog=1

15 d_time(1,:)=toYMDHMS(a_year,a_start);

16 d_time(2,:)=toYMDHMS(a_year,a_end);

17 ch_Pt=a_simul (3)*ones(1,8);

18 ch_range=a_simul(5)*ones(1,8);

19 ch_az=a_simul (6)*ones(1,8);

20 ch_el=a_simul (7)*ones(1,8);

21 return

22 end

23

24 if d_parbl(128)>4 & d_parbl(128)<=10,

25 % The site information

26 names=[’K’;’T?;°V?;’8’];

27 if name_site™=’¥’

28 name_site=names(d_parbl(1));

29 end

30

31 % Put the remote receiver locations to GUP variables

32 % Why? Because the remote sites may have common initialization file
33 if name_site==’K’

34 p_RECloc=[67.863, 20.44, .412];

35 elseif name_site==’8’

36 p_RECloc=[67.367, 26.65, .180];

37 end

38

39

40 % The radar controller program number

a1 d_rcprog=d_parbl(92);

42 % endtime of integration

43 [time,year]=tosecs(d_parbl(2:4));

44 d_time(2,:)=toYMDHMS(year,time) ;

45 % starttime of integration

46 time=time-d_parbl(94);

a7 d_time(1,:)=toYMDHMS(year,time) ;

48 fprintf(’%4.0£/%2.0£/%2.0f %2.0f:%2.0f:%2.0f’,d_time(1,1:6))
49 fprintf(’-%2.0f:%2.0f:%2.0f integrated\n’,d_time(2,4:6))

50

51 % Antenna pointing direction

52 ch_az=(d_parbl(6)/10)*ones(1,8);

53 ch_el=(d_parbl(9)/10)*ones(1,8);

54

55 % transmit frequencies for channels

56 if d_parbl(13)>1000, % upper first local oscillator for UHF
57 ch_f=d_parbl(13)/10-d_parbl(19:26)°/100-30;

58 elseif d_parbl(13)>800, % lower first local oscillator for UHF
59 ch_f=d_parbl(13)/10+d_parbl(19:26)°/100-30;

60 else

61 error(’ VHF experiment?, update decodeparblock’)

62 end

12

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

63

64 % filter widths

65 ch_filt(2,:)=d_parbl(35:42)’/10;

66 % filter types are stored in two words, 4 bits reserved for each channel
67 for i=1:4, ch_filt(1,[4+i,i])=rem(floor(d_parbl(87:88)’/16~(i-1)),16); end
68

69 % analog-to-digital conversion intervals

70 ch_adc=[d_parbl(78:79)/20;d_parbl(80:85)/10]’;

kgl

T2 % transmitter power

73 ch_Pt=ones(1,8)*d_parbl(99)*1000;

74 if rem(d_parbl(127),2)==1,

75 ch_Pt=ones(1,8)*max(d_parbl([99,101]))*1000;

76 end

kird

78 % Range to the common volume (for remotes on multistatic radars only)

79 range=d_parbl(11);

80 if d_parbl(11)==0,

81 if (name_site==’K’ | name_site==’§’)

82 fprintf(’ Distance to the common volume is not stored at the parameter block\n’)
83 fprintf(’ Skipping this integration period\n’)

84 0K=0; return

85 else

86 range=1000;

87 end

88 end

89 ch_range=range*ones(1,8)/10;

9n

91 else

92 error (’Unknown parameter block version, update decodeparblock’)

93 end

The radar constant

The system constant C is defined so that the received power Pg in units of K is obtained from the equation

R
&Bw Pr = C'Pyp (Eo)zlt,t

N./Ng
(14 (RA)*)(1 4 (kA)? + Te/T3)”

where k the Boltzmann constant, By the receiver bandwidth, Pr is the transmitted power, Ry the reference
range, I? is the range to the gate, [; ; the effective pulse length in seconds, and Ny the reference electron
density. For monostatic case the constant C is then

fb(f%o) C
C=—2A.+¢(Ry)No—,
P 11(Ro)Nog

where Py(Rp), the power scattered by a single electron at the beam axis at range Rp, is given by Eq. 2.21
in Lehtinen&Huuskonen (JATP special Issue 1994, submitted) and A.y¢, the effective beam cross section, is
given by Eq. 2.36. Note that the defintion os Py by Eq. 2.21 contains the transmitted power, and therefore
Py 1s divided by Pr in the equation above. If the reference range is 150 km and the reference electron density
101 m =3, the numeric value of C is 8.443 - 10~ 1°.

The system constant Cf is often (e.g. Kirkwood et al.; 1986, JATP 48, 773-775) defined by the equation

_ CoR*6Bw Pr(1+ (kA)?)(1+ (k) + T./T)

N, .
2Prl;
The system constant definitions give
2Ny
Cs = —.
CR2

The numeric value of C' shown above gives a value of 1.0543 - 10'® for ;. This can now be compared
with values obtained by comparing EISCAT with other instruments. Bjgrna and Kirkwood (1986, Ann.
Geophys. 4, 137) obtained 1.18 - 10'° by comparing ion-line and plasma-line measurements. The present
EISCAT values (1992-93) of 0.95 - 10! for CP1 and 1.06 - 10'° for CP3 have been obtained by comparision
with ionosonde and dynasonde measurements. It seems evident that there remains an uncertainty of the
order of 10% in the electron densities.

13

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

Function radar_eq.m calculates a coefficient

for each correlator result memory location separately. It also includes a scaling factor which changes the
effective pulse length from p_dtau units to meters. The procuct of the last two factors in the radar equation
(l;+ and N, /Ny .. .) is obtained when the scaled spectrum is multiplied by the spectral ambiguity functions in
dirthe.m. Then, to get the received power in units of K, 1t will only be necessary the multiply the products

C(addr) = C Py (%)2 /(xBw)

by the addresswise factor C(addr).
/geo/gmt/askoh/guisdap/mi52/radar_eq.m

LI -, S S

Lo N T T B R R S O R I O I N e T e e e =
B e R - R N O R e I B . I A S = B B L T N G Y B G N U R)

58

% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
%
% radar equation for monostatic and bistatic cases
% function radar_eq
function radar_eq

global ch_fradar ch_gain ch_Pt ch_az ch_el p_XMITloc p_RECloc
global v_lightspeed v_electronradius v_Boltzmann p_dtau p_RO p_HNO
global ad_coeff ad_range ad_w

global 1lpg_h 1lpg_w 1lpg_code lpg_bcs lp_vc vc_ch

global ADDR_SHIFT name_site

global sc_angle sc_RO sc_R1 ch_range k_radar k_radarO

scale=(p_dtau*le-6*v_lightspeed/2); % Scale factor from p_dtau units to meters

Cbeam=0.460; % This factor depends on the beam geometry
eff=0.651;

% Antenna efficiency is the ratio of the true gain and the
% theoretical gain 4*pi*A/lambda”2

% First find the ranges and the scattering angles from the common volume
% For monostatic case quite simply
% Check that distance from transmitter to receiver less than 100 m
if max(abs(gg2gc(p_XMITloc)-gg2gc(p_RECloc)))<.1
sc_angle=pi;
sc_RO=p_RO*scale;
sc_R1=p_RO*scale;
k_radar=k_radarO;

% Effective beam cross section
Aeff=Cbeam*eff*(4+pi*sc_R0O"2)./ch_gain;

% Volume for unit pulse length
Veff=Aeff*scale;
% Comment: Pulse lengths are also expressed in units of p_dtau

% Multiplication by scale is included here so that

% is is not needed in functions dirthe and power_prof
else

ch=1;

[gg_sp,angle,ranges]=loc2gg(p_RECloc,[ch_el(ch),ch_az(ch),ch_range(ch)],p_XMITloc);
sc_angle=angle;

sc_RO=ranges(2)*1E3;

sc_Rl=ranges(1)*1E3;

% Effective scattering volume in m~3 for the remotes
P=(32%pi/0.3215)"2/3.63;
Veff=(pi/P)~1.5%(sc_RO"2*sc_R172)/sqrt(sc_RO"2+sc_R172)/sin(sc_angle);
fprintf(’ Veff is %.4g\n’,Veff)

% Update range variables for the new geometry
ind=find(1pg_bcs==’s");

range=sc_R1/scale;
1pg_h(ind)=range*ones(size(ind));
lpg_w(ind)=(range/100)*ones(size(ind));
ad=ADDR_SHIFT+1pg_addr(ind);
ad_range(ad)=range*ones(size(ad));
ad_w(ad)=(range/100)*ones(size(ad));
% Update now the radar k
k_radar=k_radarO*sin(sc_angle/2);

% HWow testing the Uppsala remote equation
if 0,

lpg=find(1pg_bcs==’s’); lpg=lpg(1);
w=wrlpg(lpg_lp(lpg));
r=1:length(w);
pp=round (sum(w’ .*r)/sum(w));
rr=round((sc_RO+sc_R1)/scale/2);
r=r-pptrr;
global 1pg_ND
A=sqrt (3.63/2)%(0.3215/pi/32) ;

14

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

71 TX=[ch_fradar(ch) ,ch_gain(ch) ,A,A];

72 [Cs,r2,leff,wwr]=radar_MB(TX,TX,sc_RO/1E3,sc_R1/1E3,sc_angle,r*le-6,w);
73 leff=1leff/1lpg _HND(1lpg)*le6;

74 Aeff=Cbeam*eff#*(4*pi*sc_R0O"2)./ch_gain; % This is for monostatic

75 Veff=Aeff(1)#*leff*scale;

76 fprintf(’ Veff is %.4g\n’,Veff)

77 end

78 end

79

80 lambda=v_lightspeed./ch_fradar;

&1

82 % Single electron cross section at the beam intersection for unit power
83 polfac=1-0.5*sin(sc_angle)~2;

84 %fprintf(’ Polarization factor is %.2f\n’,polfac)

85 POperPt=4*pi*(v_electronradius~2)#*polfac*...

86 (ch_gain./(4*pi*sc_R0O"2)) .*(ch_gain./(4*pi*sc_R172)).*(lambda."2/(4*pi));
8T

88 % Multiplier for scale electron density and true power

89 p_coeffO=POperPt.*ch_Pt.*Veff*p_NO;

90 % Calculate now the factor for virtual channels

91 vc=find(vc_ch>0); % These virtual channels in use

92 p_coeffO=p_coeff0O(vc_ch(vc))./(v_Boltzmann*Ap(vc,0)/(p_dtau*le-6));

93

94 % For monostatic case calculate for each point the range factor

95 for sig=find(lpg_bcs==’s’)

96 % Must find the virtual channel now

97 1p=lpg_lp(sig);

08 ve=lp_vc(1p(1));

99 addr=ADDR_SHIFT+1lpg_addr(sig);

100 ad_coeff(addr)=p_coeffO0(vc)*(sc_R1./(scalexad_range(addr)))."

101 end

102

103 % Finally factor to compensate for all the inaccuracies in the numeric constants
104 %Magic_constant=1.11;

105 %ad_coeff=ad_coeff/Magic_constant;

Scaling and background subtraction

Before proceeding to the half profile analysis, all the data is divided by factors arising from the correlator
algorithm (1pg_ND). This operation is needed because the correlator algorithm and hence the factors may be
different for signal, background and calibration. This scaling is also done to the spectral ambiguity functions.

At the second stage, the data is scaled by the calibration measurements, so that all data is in units of K.

The scaling factor is
IEM

Fkal_'}%ack7

where T,.4; 1s the calibration temperature and the P’s are the calibration and background powers for the
virtual channel. This operation conveniently gives small numbers for presentation in the figures and an easy
way to compare the signal strength to the system temperature.

/geo/gmt/askoh/gulsdap/m152/scale data.m
GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% Here the data points are divided by the correlator algorithm factors lpg_ND.
% By this procedure different signal/background/calibration algorithms are
handled automatically. The spectral ambiguity functions are scaled

% accordingly by routine ’scale_lpgwom’

% Hext the data is transformed to units of K with the calibration data
% This is not an optimal solution, and will be reconsidered in later releases

© MW O R W N
o=

o
= o
i

Warning: NEVER perform this operation twice, as the resuls is returned
in the input variables ’d_data’, ’d_varl’ and ’d_var?2’
See also: an_start, scale_lpgwom

=
w N
s

IS

function scale_data

oo e
N o,

global 1lpg_ra 1lpg_ND lpg_cal lpg_bac 1lpg_T d_data d_varl d_var2 ADDR_SHIFT

n

Yk Akkdokokokkkkkkkk SCALING BY CORRELATOR ALGORITHM FACTORS ks kokskokskokkokokkokk

data=d_data;

d_data=zeros(size(data));

for 1pg=1:length(lpg_ra) Y% go through all lag profile groups
addr=1pg_addr(1lpg) ; % result memory addresses for 1pg;
addr=addr+ADDR_SHIFT; % To change from radar to Matlab addressing
d_data(addr)=data(addr)/lpg_ND(1lpg);
d_varl(addr)=d_varl(addr)/(lpg_ND(1pg)*1pg_ND(1lpg));
d_var2(addr)=d_var2(addr)/(1lpg_ND(1pg)*1pg_ND(1lpg));

[SEE VR VR R C R U U
TG0 R @ N RO ©

15

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

28 end

29

30 Yok Rk kR ok k ok kokkokkkkkok ATD BY CALIBRATION POWER ok kskskkokdok ok koskokok dokok dok kokok
31 %calculate first scale for all calibration measurements

32 calibs=diff_val(lpg_cal); % find all different values

33 calibs=calibs(find(calibs>0)); % Accept non-zero values

34 scale=zeros(size(lpg_cal));

35 for cal=calibs

36 bac=1pg_bac(cal) ;

37 bac_power=mean(d_data(lpg_addr(bac)+ADDR_SHIFT));

38 cal_power=mean(d_data(lpg_addr(cal)+ADDR_SHIFT));

39 scale(cal)=(cal_power-bac_power)/lpg_T(cal);

40 end

41

42 for 1pg=1:length(lpg_ra) Y% go through all lag profile groups
43 cal=1lpg_cal(lpg);

44 addr=1pg_addr (1pg)+ADDR_SHIFT; % To change from radar to Matlab addressing
45 d_data(addr)=d_data(addr)/scale(cal);

46 d_varl(addr)=d_varl(addr)/(scale(cal)*scale(cal));

47 d_var2(addr)=d_var2(addr)/(scale(cal)*scale(cal));

a8 end

After the scaling operation the background can be subtracted from the signal in subr_backgr. In case a
background estimate is found and subtracted, the data variances are also updated.

/geo/gmt/askoh/guisdap/mi52/subr_backgr.m
1 % GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

2

3 % function to estimate and subtract the background component in the data
4 % uses the stored background lag profile group numbers in ’lpg_bac’

5 % Tries to include the subraction effect also in the variance estimate

6 %

7 % See also: an_start

8 %function subr_backgr

9 function subr_backgr

10

11 global d_data d_varl d_var2 lpg_bac lpg_nt lpg_background ADDR_SHIFT

12

13 data=d_data;

14 varl=d_vari;

15 var2=d_var2;

16

17 Yok kokkkokok ok ok ok ok kokokkkokokkkokk SUBTRACTING BACKGROUND okskokskosk sk ok sk sk ok ok ok sk ook ok skok ok ok ok
18 bacs=1pg_bac(lpg_bac>0);

19 bacs=diff_val(bacs); Y% find all different values

20

21 for bac=bacs,

22 addr=1pg_addr(bac)+ADDR_SHIFT; % To change from radar to Matlab addressing
23 background=mean(data(addr)) ;

24 variancel=mean(vari(addr))/lpg_nt(bac);

25 variance2=mean(var2(addr))/lpg_nt(bac);

26 for lpg=find(lpg_bac==bac)

27 addr=1pg_addr(lpg)+ADDR_SHIFT; % To change from radar to Matlab addressing
28 lpg_background(lpg)=background;

29 d_data(addr)=data(addr)-background;

30 d_varil(addr)=varil(addr)+variancel;

31 d_var2(addr)=var2(addr)+variance2;

32 end

33 end

16

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

The initial values for plasma parameters

The initial values for the plasma parameters are defined by function get_apriori. It takes the the plasma
parameters from function ionomodel. The electron density is calculated from the power measurements, if
they exist. The calculation uses the temperature values supplied by the ionomodel.

/geo/gmt/askoh/guisdap/m152/get_apriori.m

% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

",

A
% This function find the center altitudes of the analysis gates and calls
% ionomodel to get the model ionosphere for these altitudes.
Next, all zero lag measurements are used to get an initial estimate for
% the electron density

[O I I N
o=

% See also: ionomodel, power_prof range_to_height
function get_apriori(simul)

= =0
= o

global a_addr a_adstart a_adend a_range a_priori a_priorierror ADDR_SHIFT
global 1lpg_bcs 1lpg_lag ch_el p_NO ad_w ad_range di_results di_figures
global pp_profile pp_range pp_sigma

T
oos W N

if nargin==0, simul=0; end

»

for gate=1:length(a_adstart)
range(gate)=mean(ad_range(a_addr(a_adstart(gate):a_adend(gate))+ADDR_SHIFT));

end

height=range_to_height(range,ch_el(1));

% form the a priori model for the analysis

[a_priori,a_priorierror]=ionomodel (height’);

% change from physical to scaled variables

a_priori=real_to_scaled(a_priori)

a_priorierror=real_to_scaled(a_priorierror);

SR I R R R N R
3 R @ N = O O 0 -

% Exit here, if the a_priori model is loaded for simulation purposes,
% or it should not be updated with the measured raw electron denstity
if simul, return, end

IEVENCENN]
S 0 ®» 3

% Calculate electron density estimates from zero lags, if available.
ind=find(lpg_bcs==’s’ & lpg_lag==0);

w w
[

33 if length(ind)>O0,

34 [pp_profile,pp_range,pp_sigma]=power_prof(lpg_addr(ind)’,0);

35 pp_height=range_to_height (pp_range,ch_el(1));

36

a7 if di_figures(2),

38 figure(di_figures(2));set(gcf, NextPlot’, ’replace’) ;clf reset
39 p=plot(pp_profile*(p_NO/1ell) ,pp_height,’0’);

40 set(p,’MarkerSize’,2)

a1 title(’Ne with model Te/Ti’)

42 ylabel(’Altitude/km’); xlabel(’Raw electron density/lell’), drawnow
43 end

44

45 % Update the a priori electron density

46 for gate=1:length(a_adstart)

a7 ind=find(abs(pp_range-range(gate))<ad_w(ADDR_SHIFT+a_addr(a_adstart(gate))));
48 if length(ind)>0,

49 a_priori(gate,l)=mean(pp_profile(ind));

50 a_priorierror(gate,1)=10*a_priori(gate,1);

51 end

52 end

53 end

The equation for the received power can be solved for the electron density. It gives the following third order
equation:

T, T,
N2 —o(l4+ —=)N.> =0 A2+ —)N. — 0 A* = 0,
where
_ NokBw P, <£>2
~ CPrlyy ‘R
and

A=k erpT./e’.

When solving the equation, the temperature values are taken from the a priori model. If the equation has
more than one real root, the one closest to o(1+7T./T;) is chosen. The latter is the simple solution obtained
when the Debye effects are neglected. When speed is important, it is possible to calculate that simple
solution only.

17

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

/geo/gmt/askoh/guisdap/mi52/power_prof.m
A

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

2 %

3 % Function calculates the electron density from a given set of measurements

4 % using the temperature ratio values in the model ionosphere

5 % Hote that this calculation operates in physical units instead of scaled units
6 % Input parameters:

7 % addr: addresses to use

8 % Debyecorr: Two different options are available

9 % The first one is faster but neglects Debye correction (Debyecorr=0)
10 % The other one is slower but includes Debye correction (Debyecorr=1)
11 % output: pp_prof : Raw electron density with the a priori Te/Ti model

12 % pp_range: The range to the center of gate

13 % pp_sigma: Raw power profile with Te/Ti=1, excl. Debye term

14 ./-

15 % See also: get_apriori

16 ./-

=
3

% function [pp_prof,pp_range,sigmal=power_prof(addr,Debyecorr)
function [pp_prof,pp_range,sigma]=power_prof(addr,Debyecorr)

o= e
S v ®»

global ad_range ch_el d_data lpg_womscaled ad_lpg p_om ad_coeff
global v_epsilonO v_Boltzmann v_elemcharge k_radar p_NO ADDR_SHIFT

[SEECI)
@ R e

addr=addr+ADDR_SHIFT; % To change from radar to Matlab addressing
pp_range=ad_range (addr) ;
pp_height=range_to_height(pp_range,ch_el(1));

apriori=ionomodel (pp_height);

[CEESINCINN]
G0 o

signal_power=real(d_data(addr));
len_eff=max(real(lpg_womscaled(ad_lpg(addr),:))’)’;
sigma=p_NO*signal_power./(ad_coeff(addr)’ .*len_eff);

wow NN
= 0 0 o

% Here one can choose of two different solutions
% The first one is faster but neglects Debye correction (Debyecorr=0)
% The other one is slower but includes Debye correction (Debyecorr=1)
% Hote that this calculation operates in physical units instead of scaled
if Debyecorr,
% solve the third order equation for electron density
ratio=apriori(:,3);
Te=apriori(:,2).*ratio;
ch=1; Y% hyi hyi
A=(k_radar(ch)) " 2%v_epsilonO*v_Boltzmann*Te/(v_elemcharge) "2;
B=-sigma.*(l+ratio);
C=-sigma.*A.*(2+ratio);
D=-sigma.*A.*4;
for i=1:length(A);
apu=roots([1,B(i),C(i),D(i)]);
% choose the root closest to the first order solution equal to -B.
[hups,ind]=min(abs(apu+B(i)))
res(i,1)=apu(ind);
end
else
% Solve only the first order equation (neglect Debye effect)
ratio=apriori(:,3);
res=sigma.*(l+ratio);
end

DUTooOn ou O T s B R R R B R R W W W W W W W
o B B L I T T S R R e R I B S U ¢

pp_prof=res/p_NO;
pp_sigma=2*sigma;

Joooo
D o»

18

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

The half profile analysis

The half profile analysis goes through the vector a_addr and performs the analysis assuming that the plasma
parameters are constant in the altitude range covered by the range ambiguity functions of the crossed
products included in each gate. The program flow is as follows:

loop through gates
divide addresses into zero lag measurements (addr1) and others (addr2)
select the spectral ambiguity functions (f_womega)
select the radar equation factors (p_coeff)
form the data vector for the fit (measurement)
initialize the fit variables (aa)
form the variance vector(variance) either
from empirical variance estimates calculated during integration
or by calculating those from theory
update the fit variables (aa)

call the fit routine
if mex routines not in use (mrqmn)
if mex routines available (mrqmndiag)
store results, print them on console and dipsplay graphically (store_results)
end loop through gates

/geo/gmt/askoh/guisdap/mi152/half_prof.m

% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
",

A

% Main analysis routine, NOT documented yet, sorry

%function half_prof

function half_prof

t_start(2)

global a_addr a_adstart a_adend a_control ad_lpg ad_coeff ad_range ADDR_SHIFT
global d_data d_varl d_var2 d_time p_rep p_dtau ch_el dp_comp di_fit dp_fit
global 1pg_ND lpg_lag lpg_womscaled lpg_bac lpg_cal 1lpg_background

global a_priori a_priorierror f_womega p_coeffg p_ND

global r_range r_status r_ind g_ind

global pldfvv p_DO p_om k_radar k_radarO

LI - S S

P S
T

r_ind=0;
for g_ind=1:length(a_adstart)
r_ind=r_ind+1;
% ADDR_SHIFT is added to result memory addresses
% in order to transfer from radar indexing to Matlab indexing
addr=a_addr(a_adstart(g_ind):a_adend(g_ind));
lpgs=ad_lpg(addr+ADDR_SHIFT); % These are the lag profile groups of the data points

I I e
[= R B

f_womega=[real(lpg_womscaled(lpgs,:));imag(lpg_womscaled(lpgs,:))];
p-coeffg=[ad_coeff(addr+ADDR_SHIFT) ,ad_coeff (addr+ADDR_SHIFT)]’;

NN N
-

signal_acf=[real(d_data(addr+ADDR_SHIFT));imag(d_data(addr+ADDR_SHIFT))];
measurement=[signal_acf;col(a_priori(g_ind,1:5))];

[YEESIEN]
» -3 o

% Take starting point from the a priori model, temperature values are taken from

% the previous gate (if previous fit was successful and gate below the present one).

aa=a_priori(g_ind,:);

if r_ind>1, if mean(ad_range(addr+ADDR_SHIFT))>=r_range(r_ind-1) & r_status(r_ind-1)==0,
aa(2:3)=result(2:3); aa(l)=aa(1l)*(1+result(3))/(1+a_priori(r_ind,3));

end, end

W oW oW W W W oW N
S oA &N RO O

if a_control(4)==1, % Using variance estimates calculated from data
signal_var=real ([d_varl(addr+ADDR_SHIFT)+d_var2(addr+ADDR_SHIFT); ...
d_var2(addr+ADDR_SHIFT)-d_vari(addr+ADDR_SHIFT)]1)/2;
elseif a_control(4)==2 Y calculating variance estimates from ambiguity functions
% t=clock;
lpgbac=1pg_bac(diff_val(lpg_cal(lpgs)));
ind=find(1pg_lag(lpgbac)==0);
Tback=mean(1lpg_background(lpgbac(ind))) ;
[covRe,covIm]=adgr_var(addr,Tback,aa);
WD2=1pg_ND(lpgs) . 2;
% The variance scaling is calculated from the integration time here
% In fact, it should be based on the loop counter value stored to the data dump
Int_time=(d_time(2,3:6)-d_time(1,3:6))*[24%3600; 3600; 60 ; 1];
if Int_time<O, Int_time=Int_time+24%3600; end
Var_scale=(p_rep*p_dtau*le-6/Int_time)/p_ND;
signal_var=[covRe./ND2,covIm./ND2]’ .*Var_scale;

L S N N S S
RO ©® ® 90 0k WK RO © 0

19

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

52 % fprintf(’ Time used in variance calculation %.1f s\n’,etime(clock,t))

53 end

54 % The variance for zero lag imaginary parts is zero. These must be corrected

55 % to some non-zero value in order to program to work.

56 ind=find(signal_var==0); % Assume here diagonal variance

57 signal_var(ind)=eps*ones(size(ind));

58 variance=[signal_var; (a_priorierror(g_ind,1:5)7).72];

59 r_range(r_ind)=sum(ad_range([addr,addr]+ADDR_SHIFT)./signal_var’)/sum(1l ./signal_var);
60

61 ch=1; kd2=k_radar(ch)~2*p_D0"2; Fscale=k_radarO(ch)/k_radar(ch); % hyi hyi

62 [small_f_womega,small_p_om]=find_om_grid(aa,p_coeffg,f_womega,kd2,p_om,pldfvv);
63

64 errorlim=a_control(1); status=0;

65 if errorlim>0 & errorlim<10000 % To prevent unnecessary error estimation

66 % Check if the error of Ne larger than given limit when the fit is started

67 [error,correl,alphal=error_estimate(aa,variance,kd2,p_coeffg, ...

68 small_f_womega,Fscale*small_p_om,pldfvv);
69 if error(1)/aa(l) > errorlim, result=aa; chi2=inf; status=2 ; end Y% No fit done
70 end

71 if status==0, % Now proceed to the fitting routine

72 tol=a_control(2); maxiter=a_control(3);

73 t_start(3),

74 Il Lt Lttt It A A I A LA A LA AL A LA AL AL AR LA LANY

75 [result,chi2,iter,alpha]l=mrqmndiag(aa,measurement,variance,tol ,maxiter,...

76 kd2,p_coeffg,small_f_womega,Fscale*small om,pldfvv);

77 YAAAS SN AN AN NN A S AN AN YA YA AN SN AN AN SN AN S AN AN A A A A YA A

78 status=(iter>=maxiter);

79 t_stop(3),

80 end

81 store_results(aa,measurement,variance,result(1:5),alpha,chi2,status)

82 end

83

84 t_stop(2)

The result is transferred into physical units and the error estimation is done in the function store_results.
It also prints the results to the console, stores the results into result variables starting with r_ and produces
a plot, which shows the data with the best fit theoretical values and the a priori and a posterior: values of
the plasma parameters

/geo/gmt/askoh/guisdap/mi52/store_results .m
A

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
2 A

3 % Internal routine to print and plot analysis results after each gate
4 %

5 % See also: half_prof

6 % function store_results(aa,meas,var,result,alpha,chi2,status)

7 function store_results(aa,meas,var,result,alpha,chi2,status)

&

9 global a_priori a_priorierror ad_lpg p_RECloc

=
IS}

global ch_el di_fit g_ind

global 1lpg_lag di_figures

global r_range r_status r_param r_dp r_error r_res r_apriori r_apriorierror r_ind
global k_radar k_radarO p_DO p_coeffg f_womega p_om pldfvv

= e e e
2w ow R

% Scale residual and Xfer results to physical units

=
o

16 comp=aa(6);

17 aa=aa(1:5);

18 len=length(meas)-length(aa) ;

19 chi2=chi2/len;

20 err=covm2vec(alpha);

21 res=scaled_to_real(result);

22 er=err;er(l:5)=scaled_to_real(err(1:5));

23 height=range_to_height(r_range(r_ind),ch_el(1));
24

25 % Print results to the console

26 if rem(r_ind,20)==1,

27 fprintf(’ alt Ne/lell Ti Te/Ti coll velocity [0+]/le resid status\n’)
28 end

29 fprintf(’%5.1f’ ,height);

30 fprintf(’ %4.2f:%4.2f7,res(1)/1ell,er(1)/1ell);
31 fprintf(’ %4.0f:%3.0f’,res(2),er(2));

32 fprintf(’ %4.2f:%4.2f’,res(3),er(3));

33 fprintf(’ %4.1f:%4.1f’ ,res(4)/1e3,er(4)/1e3);
34 fprintf(’ %6.1f:%4.1f’ ,res(5) ,er(5));

35 fprintf(’ %5.2f > ,comp) ;

36 fprintf(’ %4.2f ’,chi2);

37 if status==0, str=’0K’;

elseif status==1 str=’Max iter’;
elseif status==2 str=’No fit done’;
end

fprintf(str);

fprintf(’\n?’)

AR e bW ow
L 0= D0 ®

20

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

44 % Store results to result variables

45 r_param(r_ind,:)=res;

16 r_dp(r_ind, :)=comp;

47 r_error(r_ind, :)=er;

48 r_res(r_ind, :)=[chi2,sqrt(2/len)];

49 r_status(r_ind, :)=status;

50 r_apriori(r_ind,1:6)=scaled_to_real(a_priori(g_ind,:));

51 r_apriorierror(r_ind,1:6)=scaled_to_real(a_priorierror(g_ind,:));
A2

53 if di_figures(3),

54 ch=1; kd2=k_radar(ch)~2*p_D0"2; Fscale=k_radarO(ch)/k_radar(ch); % hyi hyi
55 1_om=length(p_om);

56 dom=0.5%[p_om(2)-p_om(1); p_om(3:1_om)-p_om(1:1_om-2); p_om(l_om)-p_om(1l_om-1)]’;
57 [M,N]=size(f_womega);

58 womega=f_womega.*dom(ones(M,1),:);

59 theo=dirthe([result,comp],p_coeffg,womega,kd2,Fscale*p_om,pldfvv);
60 res_err=err(1:5)’;

61 sig_err=sqrt(var);

62 indr=1:1len/2;

63 indi=len/2+1:1len;

64 indp=len+(1:5);

65 sig_r=meas(indr);err_r=sig_err(indr);

66 sig_i=meas(indi);err_i=sig_err(indi);

67 sig_p=meas (indp) ;err_p=sig_err(indp);

68 fitted_r=theo(indr);

69 fitted_i=theo(indi);

70 fitted_p=theo(indp);

71 indi=indi-length(indi);

72 indp=1:5;

73

74 figure(di_figures(3));clf

kil

76 set(gca,’Position’,[.1 .1 .7 .8],’NextPlot’,’replace’);

77 plot(0,-1,’b.’,indr,sig_r,’ro’,indr,fitted_r,’g-’) ,hold on
78 plot(indi+.2,sig_i,’bo’,indi+.2,fitted_i,’g-?);

79 plot([indr;indr],[sig_r-err_r,sig_r+err_r]’,’r-’)

80 plot([indi+.2;indi+.2],[sig_i-err_i,sig_i+err_i]’,’b-’)

81 set(get(gca,’Children’), ’MarkerSize’ ,4)

82 title(’ Data (o) and fit results (solid line)’);

83 ylabel(’Power [K]’); xlabel(’ # of data point’);

84

85 axes(’Position’,[.85 .1 .12 .8],’NextPlot’,’replace’);

86 plot(indp-0.15,sig_p,’ro’,indp+0.15,fitted_p,’go’) ,hold on
87 plot([indp;indpl-0.15, [sig_p-err_p,sig_p+err_p]’,’r:’,...
88 [indp;indpl+0.15, [fitted_p-res_err,fitted_p+res_err]’,’g-")
89 set(get(gca,’Children’), ’MarkerSize’ ,4)

90 axis([0 6 -1 max([5,ceil(fitted_p’)1)]1);

91 set(gca,’Xtick’,1:5,’XTickLabels’ ,[’N’;°T’;’r’;’¢c’;’v’]);
92 title(’parameters’)

93 drawnow

94 end

21

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

Theoretical autocorrelation function

The theoretical autocorrelation function is calculated in dirthe. It multiplies the theoretical spectrum with
the spectral ambiguity function £_womega and then with the scaling factor p_coeffg, so that the output is
in units of K. The calculation of spectrum is explained in a separate document

/geo/gmt/askoh/guisdap/mi52/dirthe.m
A

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
2 %

3 % DIRect THEory for Inocherent Scatter radar measurements

4 % Available also as a fast mex-version

5 % Input parameters:

6 % param: plasma parameters in scaled units

7 % p_coeffg: radar factor for each measurement

8 % f_womega: spectral ambiguity function for each measurement

9 % kd2: (k D)"2, k is radar k-vector and D is Debye length for scale parameters
10 % p_om: frequency axis for f_womega

11 % pldfvv: plasma dispersion function interpolation table

12 % Output parameter:

-
w
o=

theo: theoretical values for the measurements
See also: spec, transf
function theo=dirthe(param,p_coeffg,f_womega,kd2,p_om,pldfvv);

- = o
Do
o=

t_start(4)

[
»

param=real(param); % hyi hyi

S
S o©

% The allowed ranges of the scaled parameters are defined here
param(1)=max(0.005,param(1));
param(2)=min(100,max(0.1,param(2)));
param(3)=min(8,max(0.20,param(3)));

param(4)=max(param(4),0);

NN N NN
[S S

[nin0,tit0,mim0,psi,vil=transf(param);
s=spec(nin0,tit0,mim0,psi,vi,kd2,p_om,pldfvv);

W oNON N
o ® o -1

theo=[p_coeffg.*(f_womega*s);col(param(1:5))];
t_stop(4)

@
s

Other routines called by an_start

The Matlab indexing starts from 1, which may be different from the radar indexing. This 1s handled by
get_ADDRSHIFT.m which produces a global variable, which is always added to address variables before a
reference to Matlab matrices is done.

/geo/gmt/askoh/guisdap/m152/get_ADDRSHIFT .m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% ADDR_SHIFT is needed as indices to Matlab matrices start from 1 and the first address
% used by the radar can be diffrent. For instance it is O for the EISCAT radars
GUISDAP uses the true result memory addresses, until a reference to a Matlab-matrix
% is needed. At that point ADDR_SHIFT is added to the address.

% The routine assumes that the base address is zero. If that is not the case the

% value of the base address must be supplied using the global parameter p_baseaddr

% This parameter is meaningful only for data analysis

Lo N L
o=

o
=
g

function get_ADDRSHIFT.m
function get_ADDRSHIFT

== e
)

global ADDR_SHIFT p_baseaddr

[
o o

if length(p_baseaddr)==0,

p_baseaddr=0; % This is the first result memory address used by EISCAT
end
ADDR_SHIFT=max(0,1-p_baseaddr);

== e
© » -1

Load_filelist checks whether the data directory contains EISCAT raw data files or binary matlab files.
The former ones have an extension .dtst whereas the latter ones end with .mat. In the latter case, the
filehist file is also loaded.

/geo/gmt/askoh/guisdap/mi52/load_filelist .m
1 % GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% Routine to check whether data comes in EISCAT .dtst format of binary Matalb files
% Output parameters:

rawdata: true if .dtst files found on the data_path

% filelist: contains the dump times, if matlab files were found

e e W
o=

22

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

8 % See also: integr_data integr_HW chk_pari

9 %

10 %function [filelist,rawdatal=load_filelist

11 function [filelist,rawdatal=load_filelist

12

13 global data_path

14

15 0K=0; rawdata=0;

16 file=canon([data_path ’filelist’],0);

17 if exist([file,’.mat’])==2,

18 0K=1;eval(canon([’load ’, file, ’.mat -ascii’]))

19 elseif exist([file,’.dat’])==2,

20 0K=1;load([file,’.dat’])

21 else

22 files=1s(canon(data_path,0));

23 for ind=find(files==’d’)

24 if files(ind-1:ind+3)==’.dtst’

25 rawdata=1; 0K=1;break

26 end

27 end

28 end

29

30 if OK & rawdata

31 FPrintf (O kkskkkkskokkskkokskkok s kok ok ko ok ks kK ok ko ko ok kK skok Kok ko kR ok \ 0)
32 fprintf(’ Data directory contains EISCAT raw data files\n’)

33 fprintf(’> Data will be integrated by Nigel Wade’’s integration front end\n’)
34 FPrintf (O kkskkkkskokkskkokskkok ok ko ok kKoK ok ko ko ok kKo skok Kok kR kR ok \ 0)
35 elseif OK & “rawdata

36 FPrintf (O kkskkkkskokkskkokskkok s kok ok ko ok ks kK ok ko ko ok kK skok Kok ko kR ok \ 0)
37 fprintf(’ Data directory contains matlab files\n’)

38 fprintf(’ Data will be integrated by GUISDAP integration routine\n’)

39 FPrintf (O kkskkkkskokkskkokskkok ok ko ok ks kK ok ko ko ok sk ko skok Kok kR kR ok ok \ 0)
40 filelist=diff_val(filelist);

41 else

42 FPrintf (O kkskkkkskokkskkokskkok s kok ok ko ok ks kK ok ko ko ok kK skok Kok ko kR ok \ 0)
43 fprintf([> No data found in directory ’, data_path, ’\n Contents of the directory is:\n’])
44 fprintf(ls(canon(data_path,0)))

45 FPrintf (O kkskkkokskokkskkokskkk ok ok ko ok ks kK ok ko ko ok kK skok Kok kR kR ok ok \ 0)
16 error(’)

47 end

Loading of initialization file. The routine first checks, if there i1s a special init file corresponding to d_rcprog
(radar controller program number) — in this case the file name ends with that number. (In experiments with
only one init file, these are not numbered at all).

It is necessary to create many init files in experiments with many radar controller programs, because pulse
timing differs from program to program.

/geo/gmt/askoh/guisdap/mi52/load_initfile .m

1 % GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

",

A

% A script to load the ambiguity functions etc. into the workspace for analysis

% The script assumed that variables name_expr and name_site exist in the workspace

% The script contains reference to EISCAT remote sites. However, the script works
without modifications for other radars as long as name_site is different from K and §

% See also: path_expr save_toinitfile

© W e W
o=

=
IS}

clear vcg_Aenv

temp=[path_expr name_expr name_site];

-
IS

13 if name_site==’K’ | name_site==’8’;

14 temp=[path_expr name_expr ’R’];

15 end

16 if exist(’d_rcprog’)==1, rcp=d_rcprog; else rcp=0; end

17 if exist(canon([temp ’_’ int2str(rcp) ’init.mat’],0))==2,
18 eval(canon([’load ’> temp ’_’ int2str(rcp) ’init’]))

=
©

elseif exist(canon([temp ’init.mat’],0))==2,
eval(canon([’load ’> temp ’init’]))

else
fprintf([’\n\n\n File >, canon([temp ’init.mat’],0),’ not found \n\n\n’])
error(’)

end

if GUP_iniver<1.52,
fprintf (P*\n#¥\n* Files produced by GUP version %.2f not usable\n’, GUP_iniver)
fprintf(’* Please, reinitialize the experiment with GUP 1.52 or later\n*\n*\n’)
error(’)

end

WONONN NN NN NN
D0 ® 9% kKN = O

if exist(’vcg_Aenv?)
vc_Aenv=vcg_Aenv(:,vc_group);
vc_Ap=vcg_Ap(:,vc_group);
vc_Apenv=vcg_Apenv(:,vc_group);

W oW oW w
I

23

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

35 vc_penv=vcg_penv(:,vc_group);

36 vc_penvabs=vcg_penvabs(:,vc_group);

37 clear vcg_Aenv vcg_Ap vcg_Apenv vcg_penv vcg_penvabs
38 end

39 clear rcp temp

The routine form_adpar.m calculates certain parameters for all those correlator address memory locations,
which contain signal crossed products. The parameters are:

ad_range Range to gate

ad_code Modulation type

ad_coeff Factor in the radar equation, to be calculated in radar_eq.m
ad_w Width of the range ambiguity function

ad_lpg Lag profile group number
/geo/gmt/askoh/guisdap/m152/form_adpar.m

1 % GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

2 %

3 % This internal routine calculates certain parameters for each memory location in advance
4 % so that they can be obtained rapidly later

5 % ad_range : Range to the center of ambiguity function

6 % ad_w : Width of the ambiguity functions

7 % ad_code : Code number

8 % ad_lpg : Lag profile group number

9 % ad_coeff : The radar factor (to be calculated in radar_eq)

-
o
o=

=
=

function form_adpar

[
w N

global 1lpg_ra lpg_nt lpg_ri lpg_bcs lpg_h 1lpg_dt lpg_w lpg_code
global ad_range ad_w ad_code ad_lpg ad_coeff ADDR_SHIFT

== e
EREEES

len=max(lpg_ra+(lpg_nt-1).*lpg_ri)+1;
ad_range=zeros(1l,len); ad_w=zeros(l,len);
ad_code=zeros(l,len); ad_lpg=zeros(l,len);
ad_coeff=zeros(l,len); % used in radar_eq
for sig=find(1lpg_bcs==’s’)
addr=1pg_addr(sig)+ADDR_SHIFT; % To change from radar to Matlab addressing
len=length(addr);
ad_range (addr)=1pg_h(sig)+(0:1pg_nt(sig)-1) > *1lpg_dt(sig);
ad_w(addr)=1lpg_w(sig)*ones(len,1);
ad_code(addr)=1pg_code(sig)*ones(len,1);
ad_lpg(addr)=sig*ones(len,1);
end

R
T 6 A @R OO o

The main fit routine uses the Levenberg—Marquardt algorithm. The implemented version accepts either a
full covariance matrix or a vector containing the diagonal.

/geo/gmt/askoh/guisdap/mi52/mrqmn.m
1 % GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
%
% See also: mrqmndiag
function [aa,chi2,its,alpha,0K]=...
mrqgmn (a,ym,variance,ftol,itmax,kd2,p_coeffg,f_womega,p_om,pldfvv,errorlim)

comp=a(6);a=a(1:5);
if nargin==10, errorlim=inf; end
0K=1;
if min(size(variance))==1, diagonal=1;end
if diagonal,
invsigma=1 ./variance;
apu=invsigma*ones(1l,length(a));
else
invsigma=inv(variance);
end
lambda=0.001;
aa=a; validder=0;
ya=dirthe([aa,comp] ,p_coeffg,f_womega,kd2,p_om,pldfvv);
dyda=zeros(length(ya) ,length(aa));
if diagonal,
chi2=(ym-ya)’*(invsigma.*(ym-ya)) ;
else
chi2=(ym-ya)’*invsigma*(ym-ya) ;
end
its=0;
while its<itmax
if “validder
its=its+1;
for i=(1:length(aa))
aa2=aa; aa2(i)=aa(i)+0.0001;
dyda(:,i)=(ya-dirthe([aa2,comp],p_coeffg,f_womega,kd2,p_om,pldfvv))/0.0001; %calculate deriva-|ii

© 0 DU W N

[N e e e e T
N H O ®©» T 0 1k XK E OO0 D0 AW RO

tives;

24

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

33 end

34 if diagonal,

35 alpha=dyda’*(apu.*dyda) ;

36 beta=dyda’#*(invsigma.*(ya-ym));

37 else

38 alpha=dyda’*invsigma*dyda;

39 beta=dyda’*invsigma*(ya-ym) ;

40 end

a1 if its==1 error=sqrt(diag(inv(alpha)));

42 if error(1)>errorlim, 0K=2; return, end
43 end

44 end

45 da=((alpha+lambda*eye(size(alpha)))\beta)’;
46 % disp(da);

4t chi2o0ld=chi?2; yaold=ya; aaold=aa;

48 aa=aatda;

49 ya=dirthe([aa,comp] ,p_coeffg,f_womega,kd2,p_om,pldfvv);
50 if diagonal,

51 chi2=(ym-ya) ’*(invsigma.*(ym-ya));

52 else

53 chi2=(ym-ya) ’*invsigma*(ym-ya) ;

54 end

55 if chi2>=chi2o0ld

56 chi2=chi2o0ld; aa=aaold; ya=yaold; lambda=lambda*10; validder=1;
57 if max(abs(da))<ftol, 0K=0; break, end

58 else

59 lambda=lambda/10; validder=0;

60 if max(abs(da))<ftol, 0K=0; break, end

61 end

62 end

63 end

64 aa=[aa,comp];

65 alpha=inv(alpha);

script calculating the radar k vector (k_radar) and the Debye length (p_DO0) for the reference temperature
(p_TO) and density (p_NO).

/geo/gmt/askoh/guisdap/mi52/constants.m
4\ GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
%

% script defining useful radar constants
",

% See also: nat_const
k_radar0=2#pi*2*ch_fradar/v_lightspeed;

p_DO=sqrt (v_epsilonO*v_Boltzmann*p_TO/(p_NO*v_elemcharge~2));
p_om0=k_radarO*sqrt (2*v_Boltzmann*p_TO/(p_mO(1)*v_amu));

LI I R S

The following script defines all global parameters

/geo/gmt/askoh/gulsdap/mi52/globals m
GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% This script defines global variables needed in the data analysis
See also: glob_EISCAT, glob_GUP, start_GUP

% Define first the global variables used in the initialization
glob_GUP

R A I
o=

% These globals are needed only in the analysis

o e
IS

global a_priori a_priorierror p_ND

[
wow

global ad_range ad_w ad_code ad_lpg ad_coeff ADDR_SHIFT

[
o

global ch_az ch_el ch_f ch_filt ch_adc ch_Pt ch_scangle ch_range

[
o -1

global d_data d_parbl d_rcprog d_time d_filelist
global d_varl d_var2 % sig_varl sig_var2

[SERCE
= 2 ©

global a_addr a_adstart a_adend a_control a_ind
global a_year a_start a_integr a_skip a_end
global di_figures figure_fit

global dp_comp dp_comppost dp_fit

[CEECERVENCINN]
& A @ R

global lpg_womscaled k_radar

¥
3

% global p_coeffO p_coeffg f_womega

¥
o

29
30 global r_range r_param r_dp r_error r_res r_status
31 global r_apriori r_apriorierror r_h r_time r_XMITloc r_RECloc r_SCangle

25

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

33 % Global definitions for the spectrum calculations
34 global pldfvv pldfv % tabc2powc powc

35

36 % Global variables for full profile analysis grids
37 %global ug_r ug_ip ug_p eg.r

The two routines chk_par1 and chk_par2 form an interface between the internal GUISDAP parameters ane
the parameters supplied by the user in the startup files.

/geo/gmt/askoh/guisdap/mi152/chk_parl.m

1 o

4\ GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
%

2

3 % chk_parl is the main interface between the user supplied control parameters and

4 % the internal GUISDAP control parameters. There is mostly a one-to-one correspondence
5 % between the parameters e.g.

6 % User parameter GUISDAP parameter

7 % analysis_altit a_altit

8 % analysis_integr a_integr

9 % display_figures di_figures

10 % integ_deffile a_integdeffile

11 % The user parameters are local to the workspace whereas the GUISDAP parameters are global
12 % If any of the user parameters is not specified, or empty, the corresponding GUISDAP
13 % parameter will get the values specified in the routine.

14 .-

15 % See also: an_start globals chk_par2 load_filelist

16

17 % The first if-block tries to locate the data source and produces variables

18 % necessary for integration:

19 a_simul=[]; % If this variable present, the data is produced from theory (So clear it)
20 % The first ’if’ looks for the integration definition file for Nigel Wade’s integration
21 % package. If this variable is present and the file exists, the data comes through that package.
22

23 if exist(’integ_deffile’)

24 if exist(canon(integ_deffile,0))

25 % The first branch looks for the integration definition file for Nigel Wade’s integration
26 % package. If this variable is present and the file exists, the data comes through that package.l}
27 a_integdeffile=canon(integ_deffile);

28 a_rawdata=1; % This flags that NW’s package is to be used

29 FPrintt (7 sokokskskokskokokskokok koo koo ok ok ok skokoksk ok skt ok stk ok stk ok skokok ok skoksk ok sktokok ok \ 7)

30 fprintf(’> An integration definition file found\n’)

31 fprintf(’ Data will be integrated by Nigel Wade’’s integration front end\n’)

32 FPrintt (7 sokokskkokskkokskokok koo koo ok ok ok skokokok kst stk ok stk ok skokok ok skokok ok skkokok ok \ 7)

33 else

34 FPrintt (7 sokokskkkokskokokskokok koo koo ok ok ok skokokok kst ok kR sk stk ok skokok ok skoksk ok skkokok ok \ 7)

35 fprintf([’ File ’, integ_deffile,’ not found\n’])

36 fprintf(’ Stopping execution\n’)

37 FPrintt (7 sokoksokskokskkokskokok dkskokoksk koo ok ok ok skokoksk kst stk ok stk ok skokok ok skokok ok skkoksk ok \ 7)

38 error(’)

39 end

40 elseif exist(’analysis_simul’)

41 % The second branch is for simulated data to be calculated from the theory

42 % The presence of the variable a_simul is the flag, which is used later. Contents

43 % a_simul(1): integration time

44 % a_simul(2): controls the start time in steps of 7200 s, i.e. 2 hours.

45 % a_simul(3): The transmitter power

46 % a_simul(4): The background temperature

47 % a_simul(5:6): Antenna azimuth and elevation

48 a_simul=[0 1 1.2e6 100 300 180 90];

49 a_simul(1l:length(analysis_simul))=analysis_simul;

50 a_year=2222;

51 a_start=7200%a_simul(2);

52 a_end=7200*a_simul (2)+a_simul (1) ;

53 else

54 % The final branch is the normal case. Call to load_filelist checks whether EISCAT .dtst
55 % files are present at the data_path (a_rawdata=1) or whether matlab files are there
56 [d_filelist,a_rawdatal=load_filelist;

57 a_start=tosecs(analysis_start); Y% the programs uses internally only seconds,

58 a_end =tosecs(analysis_end); % counted from the beginning of year

59 a_year=analysis_start(1);

60 a_ind=0;

61

62 if exist(’analysis_integr’),

63 a_integr=analysis_integr;

64 else

65 % If analysis_integr not present, produce integration times from the dump times

66 % Then no (further) integration is performed by GUISDAP

67 if a_rawdata

a_integr=2; % This should make sure that all dumps are analyzed separately
else % This is for Matlab files. Note that the files may contain integrated data
a_integr=diff([a_start d_filelist(find(d_filelist>a_start & d_filelist<=a_end))’]);
end
a_skip=zeros(size(a_integr));
end

O B T - - Y
W N = O O ™

26

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

7a if exist(’analysis_skip’),

75 a_skip=analysis_skip;

76 else % if skips were not defined, assume
7 a_skip=zeros(size(a_integr)); % them to be zero

78 end

79

80 if a_rawdata

81 % If EISCAT .dtst files were found, the integration definition file is produced here
82 % The code transfers the contents of the GUISDAP control parameters to the control
83 % parameters of Nigel’s analysis package. The standard header lines are read first:
84 fid=fopen(canon([path_GUP,’matfiles/integdefs’]),’r’);

85 aa=fread(fid,inf,’char’);

86 fclose(fid);

87 a_integdeffile=canon([path_tmp,’integdef’],0);

88 fid=fopen(a_integdeffile,’w’);

89 furite(fid,aa, ’char’);

90 if name_site==’T’; fprintf(fid,[’data-source tromso\n’]);

91 elseif name_site==’K’; fprintf(fid,[’data-source kiruna\n’]);

92 elseif name_site==’S’; fprintf(fid,[’data-source sodankyla\n’]);

93 elseif name_site==’V’; fprintf(fid,[’data-source vhf\n’]);

94 end

95 fprintf(fid,[’input-names ’, canon(data_path),’\n’]);

96 fprintf(fid,’start-time %.0f:%0.f:%.0f’ ,analysis_start(4:6));

97 fprintf(£fid,’> %0.£f/%.0£f/%0.f\n’, analysis_start(1:3));

98 fprintf(fid,’end-time %.0f:%0.f:%.0f’ ,analysis_end(4:6));

99 fprintf(£fid,’> %0.£/%.0£f/%0.f\n’, analysis_end(1:3));

100 fprintf(fid,’cycle-time %0.f\n’, sum(a_integr)+sum(a_skip));

101 starts=[0,cumsum(a_integr+a_skip)];

102 for i=1:length(a_integr)

103 fprintf(fid,’scan-pos timed %0.f %0.f\n’,starts(i), a_integr(i));
104 end

105 fclose(fid);

106 end

107 end

109 a_control=[100000, 0.01, 6 1];

110 % a_control(l) WNo fit is tried, if the error of Ne is larger than (1) at the start
111 % a_control(2) Fitting is stopped when step for all parameters is less than (2)
112 % a_control(3) Maximum number of iterations

113 % a_control(4) Variance calculation

114 % = 1 when variance estimated from data

115 % = 2 when variance estimated using ambiguity functions

116 if exist(’analysis_control’)

117 ind=find(analysis_control>0);

118 a_control(ind)=analysis_control(ind);

119 end

120 if any(a_simul)

121 a_control(4)=2;

122 end

124 %dp_comp=[0:.1:1];
125 %dp_fit=0;

126 %if exist(’discretepar_fit’)==1,
127 % dp_fit=discretepar_fit;
128 %end

129

130 %if length(dp_comp)>36,

131 % fprintf(’Too many discrete parameter values\n’)
132 % error(’Contact your local GUispert’)
133 %end

135 di_figures=[11 1 1];

136 if exist(’display_figures’),

137 di_figures(1l:length(display_figures))=display_figures;

138 end

139 if exist(’display_fit’), % For compatibility with GUISDAP 1.44 and earlier
140 di_figures(3)=display_fit;

141 end

142 if exist(’display_results’), % For compatibility with GUISDAP 1.44 and earlier
143 di_figures(4)=display_results;

144 end

145

146 % check that the various path names have directory separators at the end
147 len=length(data_path); char=data_path(len);

148 if char™=’:’ & char”=’/’ & char”=’\’, data_path(len+1)=’/’;end

149

150 len=length(result_path); char=result_path(len);

151 if char™=’:’ & char”=’/’ & char”=’\’, result_path(len+1)=’/’;end

153 len=length(path_GUP); char=path_GUP(len);
154 if char™=’:’ & char”=’/’ & char”=’\’, path_GUP(len+1)=’/’;end

156 len=length(path_exps); char=path_exps(len);

157 if char™=’:’ & char”=’/’ & char”=’\’, path_exps(len+1)=’/’;end
158

27

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

159 len=length(path_tmp); char=path_tmp(len);

160 if char”™=’:’ & char”=’/’ & char”=’\’, path_tmp(len+1)=’/’;end
161

162

/geo/gmt/askoh/guisdap/mi152/chk_par2.m

1 % GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
",

%

if exist(’analysis_classic’)==1,
a_classic=analysis_classic;
else
a_classic=0;
end

e RS B S RN

fac=1000/(v_lightspeed/2)/(p_dtau*le-6);

if exist(’analysis_range’)==1,
a_range=analysis_range*fac;

elseif exist(’analysis_altit’)==1,
a_range=height_to_range(analysis_altit,ch_el(1))

else
a_range=[0 100000];

end

[B R
© X e DA W N RO

if exist(’analysis_addr’)==1,
a_addr=analysis_addr;
a_adstart=analysis_adstart;
a_adend=[a_adstart(2:1length(a_adstart))-1,length(a_addr)];
return
elseif a_classic
minrange=min(a_range) ;
maxrange=max(a_range) ;
a_range=[];
for code=diff_val(lpg_code),
lags=1pg_lag(find (1pg_code==code & lpg_bcs==’s’));
if max(lags)>0, Y% ACF data, analyze these
1pg=find (1pg_code==code & lpg_bcs==’s’ & lpg_lag==max(lags));
ranges=1pg_h(1pg)+(0:1pg_nt(lpg)-1)*lpg_dt (1lpg);
ranges=ranges(find (ranges>=minrange & ranges<=maxrange)) ;
lenr=length(ranges);
if lenr>0,
len=length(a_range) ;
a_range=[a_range ranges-1lpg_dt(lpg)/2 max(ranges)+lpg_dt(lpg)/2 0];
a_code(code,len+(1:1lenr))=ones(1,lenr);
a_code(code,len+lenr+1)=0;
end
end
a_minwidth=zeros(1l,length(a_range));
a_maxwidth=1000000000*ones(1,length(a_range));
end
else

AR A A A A A KWW W W KRR WX KR ENNNNNNNNNN
DR W = D0 M0k @R OO ® a0 0 R XN RO

lenr=length(a_range);
a_minwidth=zeros(l,lenr-1);
a_maxwidth=inf*ones(1,lenr-1);

B
S © ®»

if exist(’analysis_minwidth’)==1,
len=length(analysis_minwidth);
a_minwidth(1l:len)=analysis_minwidth*fac;
end

FAE I S S
AR S R O

if exist(’analysis_maxwidth’)==1,
len=length(analysis_maxwidth);
a_maxwidth(l:len)=analysis_maxwidth*fac;
end

S
D20 ® 9o

a_code=[];
gates=[];
codes=[];
if exist(’analysis_code’)==1,
if length(analysis_code)<length(a_range)-1;
fprintf(’ Analysis_code variable is too short and neglected\n’)
else
temp=analysis_code;
while any(temp>0);
code=rem(temp,10);
temp=floor(temp/10);
ind=find(code>0);
gates=[gates,ind];
codes=[codes,code(ind)];
end
for i=1:max(codes)
ind=find(codes==1);
len=length(ind) ;
if len>0; a_code(i,gates(ind))=ones(1,len); end

T AT A TT AT T T DD DD DO
W o NN W N HE O 0o D W

28

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

80 end

81 clear code temp ind gates codes i

82 end

83 end

84 end

&5

86 % form the addresses for each gate

87 a_addr=[];

88 a_adstart=[];

89 a_adend=[];

90 diffran=diff(a_range) ;

91 for gate=find(diffran>0),

92 addr=find(ad_range>a_range(gate) & ad_range<=a_range(gate+1));
93 % Select suitable codes

94 if length(a_code)>0,

95 ind1=[]1;

26 for code=find(a_code(:,gate)==1)";

97 ind1=[ind1,find(ad_code(addr)==code)];

98 end

29 addr=addr(ind1);

100 end

101 % Remove too narrow or too broad responses

102 ind1=find(ad_w(addr)>a_minwidth(gate) & ad_w(addr)<a_maxwidth(gate));
103 addr=addr(ind1) ;

104

105 if length(addr)>1, % store addresses if at least two points found
106 len=length(a_addr);

107 a_adstart=[a_adstart,len+1];

108 a_addr=[a_addr,addr-ADDR_SHIFT]; % From matlab indexing to radar indexing
109 a_adend=[a_adend,len+length(addr)];

110 end

111 end

112

113 if length(a_addr)==0,

114 fprintf(’ No correlator result memory locations have been selected\n’)
115 fprintf(’ Check the data selection parameters\n’)

116 fprintf(’ Execution will be stopped\n’)

117 error(’)

118 end

119

120 %clear fac minrange maxrange code codes lags lpg ranges

121 %clear lenr len diffran gate gates addr indl ind i temp

Geometry routines

Conversion routines to calculate the altitude of a gate from range and vice versa. The calculation assumes
spherical earth and so only antenna elevation is needed. Qught to be upgraded.

/geo/gmt/askoh/guisdap/mi52/range_to_height.m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
%

% range_to_height.m

% function that calculates the height of a volume (in km)

when the range (in us) and antenna direction (in deg) is known.

% See also: loc2gg height_to_range

[eR T L
o=

% function height=range_to_height(range,el)
function height=range_to_height(range,el)

- e
- o

global p_dtau v_lightspeed

- =
w o

Earth_radius=6372;

ran=range* (p_dtauxle-6%v_lightspeed/2)/1000/Earth_radius;
sin_el=sin(pi*el/180);
height=Earth_radius*(sqrt(1+2*ran*sin_el+ran."2)-1);

= e R e
» - e oo

19 % This code for elliptical earth

20 % scale=(p_dtauxle-6%v_lightspeed/2);

21 % gg_site=[69,25,0];

22 % gg_sp=loc2gg(gg_site,[el,180,range*scale/1000])
23 % [height,gg_sp(3)]

/geo/gmt/askoh/guisdap/m152/height_to_range.m
1 % GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% height_to_range.m

% function that calculates the range of a volume (in us)

when the height (in km) and antenna direction (in deg) is known.
% assumes spherical earth for the moment

e e W
o=

29

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

% See also: range_to_height

o

° %

10 % function range=height_to_range(height,el)
11 function range=height_to_range(height,el)
12

13 global p_dtau v_lightspeed

14

15 Earth_radius=6372;

16 hei=height/Earth_radius;

17 sin_el=sin(pi*el/180);

18 range=1000*Earth_radius*(sqrt (sin_el~2+2%heithei. 2)-sin_el);
19 range=range/(p_dtauxle-6*v_lightspeed/2);

The transformation from the local coordinate system, which is specified by giving the range to the common
volume, antenna azimuth and elevation, to geographic coordinates is done by loc2gg. In a bistatic case, the
routine is used to give the ranges and the scattering angle

/geo/gmt/askoh/gulsdap/mi52/loc2gg m

1 GUISDAP v1.50 94-03-10

2 %

3 % This function transforms the scattering point location given in local coordinates
4 % loc [elevation, azimuth, range] at location

5 % sitel [latitude, longitude, height] to geographic coordinates

6 % Thanks to J. Murgin (KGI Reprot NO 80:2), EISCAT analysis package, and P.Pollari
7 %

8 % In bistatic case, where another reference site (site2) is given

9 % the routine returns the scattering angle and ranges.

10 ./-

11 % See also: gg2gc, gc2gg, radar_eq

12 ./

=
@

%function [gg_sp,angle,ranges]=loc2gg(sitel,loc,site2)
function [gg_sp,angle,ranges]=loc2gg(sitel,loc, 51te2)

=
ERES

factor=pi/180; % conversion factor from degrees to radians
% earth radius (km) and flatness factor

r_earth=6378.135;

g=1.00673944;

ST
S 0 o -1

% first calculate the transformation matrices
sinlat=sin(sitel(1)*factor);
coslat=cos(sitel(1)*factor);
tanlat=tan(sitel(1)#*factor);
sinlon=sin(sitel(2)*factor);
coslon=cos(sitel(2)*factor);

[CEECENCENCERVENCIN]
I e S N N R

rlocgc= [sinlat*coslon -sinlon coslat*coslon;
sinlat*sinlon coslon coslat*sinlon;
-coslat 0 sinlat 1;

W oW oW NN
N = O © ®

s1=loc(1);s2=1loc(2);s3=1loc(3);
loc=s3*[-cos(factor*s2)*cos(factor*sl),
sin(factor*s2)*cos(factor*sl),

w w
A

35 sin(factor*s1)];

36

37 gc_sitel=gg2gc(sitel); % Sitel to geogentric

38 gc_sp=gc_sitel+(rlocgc*loc’)’; Y% Add scattering distance in geocentric
39 gg_sp=gc2gg(gec_sp); % Transform back to geographic

40

41 if nargin==3 % bistatic case

42 gc_site2=gg2gc(site2); % Site2 to geogentric

43 gc_sitel=gc_sitel-gc_sp; % Move origin to scattering point

IS
IS

gc_site2=gc_site2-gc_sp; % And same for site2

ranges=[sqrt(sum(gc_sitel."2)), sqrt(sum(gc_site2.72))];

angle=pi-acos(sum(gc_sitel.*gc_site2)./ranges(1)/ranges(2));
end

S
G900 o

/geo/gmt/askoh/gulsdap/mi52/gc2gg m

1 GUISDAP v1.50 94-03-1

2 %

3 % This function transforms coordinates from geocentric to geographic (lat, lon, h)
4 % Thanks to J. Murgin (KGI Reprot NO 80:2), EISCAT analysis package, and P.Pollari
5 %

6 % See also: gg2gc, loc2gg

7 %

8 % function gg=gc2gg(gc)

9 function gg=gc2gg(gc)

10

11 factor=pi/180; % conversion factor from degrees to radians

12 % earth radius (km) and flatness factor

13 r_earth=6378.135;

14 £=1.00673944;

15

16 if gc(1)==0 & gc(2)==0,

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

17 fprintf(’Beware of the spinning earth axis!\n’);
18 gg=[90, 0, gc(3)-r_earth/gl;

19 else

20 gg(2)=atan2(gc(2),gc(1))/factor;

21 rO=sqrt (sum(gc(1:2) .*gc(1:2)));

22 x10=gc(3)/(rO*sqrt(g)) ;

23 xi_iter=r_earth*(g-1)/(g*r0);

24 tanxi=xiO;

25 tanxi=xiO+xi_iter*tanxi/sqrt(1+tanxi~2);

26 tanxi=xiO+xi_iter*tanxi/sqrt(1+tanxi~2);

27 gg(1)=atan(sqrt(g)*tanxi)/factor;

28 gg(3)=sqrt (1+gxtanxi~2)*(r0-r_earth/sqrt(1+tanxi~2));
29 end;

/geo/gmt/askoh/guisdap/mi52/gg2gc.m
% GUISDAP v1.50 94-03-10

% This function transforms coordinates from geographic (lat, lon, h) to geocentric
% Thanks to J. Murgin (KGI Reprot NO 80:2), EISCAT analysis package, and P.Pollari
",

% See also: gc2gg, loc2gg

[B Y I
o~

% function gc=gg2gc(gg)
function gc=gg2gc(gg)

= ©
=)

factor=pi/180; % conversion factor from degrees to radians
% earth radius (km) and flatness factor

r_earth=6378.135;

g=1.00673944;

= e e e e
RN TR Sy

lat=gg(1)*factor;
lon=gg(2)*factor;
h=gg(3);

= e e e
© oW - ;

hor=(r_earth/sqrt(1+tan(lat)~2/g)+h*cos(lat));
gc=[hor*[cos(lon), sin(lon)], r_earth/sqrt((g+g~2/tan(lat)~2))+h*sin(lat)];

[SIRV]
[

Variance calculation using ambiguity functions

There are two methods to calculate the variance estimates for the measured crossed products within GUIS-
DAP. The first one is based on calculating the estimates emprically during the data integration. This
methods fails, however, when the number of dumps integrated is small, or when the data actually does not
exist at all. The latter happens, when the package is used to design new experiments.

In the other method, the variance estimate is calculated directly from theory, using expressions which give
the covariance in terms of the expected values of the crossed products. The method is documented in
Huuskonen and Lehtinen (submitted for publication in the JATP Special EISCAT Issue, 1994).

The calculation requires that an estimate of the crossed product values is available for all transmitted
pulses and for all delays. This is calculated by calc_vcsignal.m with the help of ACF.m, by giving the
noise temperature and the plasma parameter values. The simplification used is that the signal strength is
independent of range. Therefore only one reference address is given addr and the result is expressible as a
two—dimensional matrix.

/geo/gmt/askoh/guisdap/m152/calc_vcsignal .m
1 % GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% A function to calculate the signal strength for all virtual channels and for all
% lag values up to the length of p*env

% Input parameters:

addr: A reference address to give the radar factor

% T_noise: Background temperature in K

% param: plasma parameters in scaled units

% Output parameter: (global)

vc_signal: signal strength for all virtual channels and lag values
See also: ACF, real_to_scaled, adgr_covar, adgr_var, addr_covar
%function calc_vcsignal(addr,T_noise,param)

function calc_vcsignal(addr,T_noise,param)

© MmN O W N
o=

P S
A2 W N RO
;e

global vc_signal vc_group vc_Apenv vc_Ap ad_coeff ADDR_SHIFT

=
P

% Faster calculation possible if results calculated for virtual channel groups

% One group contains all virtual channels with identical transmission and filters
[a,ind]=wind (diff_val(vc_group) ,vc_group);

vcg_Apenv=vc_Apenv(:,ind);

veg_Ap=vc_Ap(:,ind);

[SEE IR
= O © ® -

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

22 [M,N]=size(vcg_Apenv);

23 len_vcsig=M;

24

25 % Calculate the plasma autocorrelation function for all lags up to length of p*env
26 ac=col(real (ACF(param,[0:M-1])));

27 % Multiply by effective pulse length (vcg_Apenv) and radar factor

28 K=ad_coeff (addr+ADDR_SHIFT)*(vcg_Apenv.*ac(:,ones(1,)));

29

30 % Background power for all lags

31 B=zeros(size(vcg_Apenv));

32 [M2,02]=size(vcg_Ap);B(1:M2,1:02)=vcg_Ap;

33 apu=T_noise./B(1,:);

34 B=B.*apu(ones(M,1),:);

35

36 vcg_signal=K+B; % Result is sum of plasma and background contributions

37 vc_signal=vcg_signal(:,vc_group); % Store to all virtual channels for fast reference

/geo/gmt/askoh/guisdap/m152/ACF.m

% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

",

A
% this function returns the theoretical autocorrelation function without
% any pulse form or receiver effects. It is implemented by calling dirthe,
and defining f_womega so that multiplying by it makes a Fourier transform
% Input parameters
% param: plasma parameters in scaled units
% lags: lag values (in p_dtau units)
% pldfvv: Plasma dispersion function in interpolation table (global)
Output parameters:
plasma_acf: plasma ACF for the specified parameters and lags
See also: dirthe, real_to_scaled
%function plasma_acf=ACF(param,lags)
function plasma_acf=ACF(param,lags)

[eR T L
o=

T B S SR
S SR T CR S
;e

global p_om p_omO p_dtau p_DO k_radar pldfvv

3

lags=col(lags);

% Create complex exponential to make the Fourier transform
paino=exp(lags*p_om’*((p_dtau*le-6)*p_omO(1)*sqrt(-1))) ;
len=length(p_om);

dom=[0; 0.5*(p_om(3:1len)-p_om(1l:1len-2)); 0]’;
[M,N]=size(paino);

% Take the frequency bin widths into account
f_womega=paino.*(dom(ones(M,1),:));

NN NN NN E e
3 oA @ N RO © ®

p_coeffg=ones(size(lags));
ch=1; kd2=k_radar(ch) 2*p_D0"2;

W oNON N
o ® o -1

plasma_acf=dirthe(param,p_coeffg,f_womega,kd2,p_om,pldfvv);
plasma_acf=plasma_acf(1l:length(lags));

@
=

The covariance between any two addresses in the result memory is given by

/geo/gmt/askoh/guisdap/mi52/addr_covar.m
A

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

2 %

3 % A low level routine to calculate the covariance of two result memory addresses.
4 % This matlab version is slow. The routine is available also as a mex-version.
5 % This routine is called by adgr_covar and adgr_var, through which the use

6 % of addr_covar is recommended.

7 % Input parameters:

8 % addrl, addr2 : result memory addresses

9 % vc_signal : signal strength as calculated by function calc_vcsignal

10 % lp_XXX : lag profile parameters

11 % Output parameters

12 % covarRe : Covariance between the real parts of addrl and addr2

13 % covarIm : Covariance between the imaginary parts of addrl and addr2

14 % See also adgr_covar, adgr_var, calc_vcsignal

%function [covarRe,covarIm]=addr_covar(addrl,addr2,vc_signal,lp_vc,lp_dt,lp_ra,...

% lp_ri,lp_nt,lp_t1,lp_t2,1p_dec,lp_nfir,lp_fir)

function [covarRe,covarIm]=addr_covar(addrl,addr2,vc_signal,lp_vc,lp_dt,lp_ra,...
lp_ri,lp_nt,lp_t1,lp_t2,1p_dec,lp_nfir,lp_fir)

S e e e e
© w9 ® o

[len,Hvc]l=size(vc_signal);

[CIRN]
= o

% Find the lag profiles which contribute to address addril
1psi=find(lp_ra<=addrl & addri<=lp_ra+((lp_nt-1).*1p_ri) .
& round((addri-lp_ra)./lp_ri)==(addri-lp_ra)./lp_ri);

[SEECI VARSIV
& R @ R

% Find the lag profiles which contribute to address addr2
1ps2=find(lp_ra<=addr2 & addr2<=lp_ra+((lp_nt-1).*1lp_ri) .
& round((addr2-1lp_ra)./lp_ri)==(addr2-lp_ra)./lp_ri);

[AEECENCINN]
o ©® ®

covl=0; cov2=0;
for 1lpl=lpsl % This is a loop over all the lag profiles in lpsil

@
=

32

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

32 dt1=1p_dt(1lpl); % integer

33 for 1p2=1ps2 % This is a loop over all the lag profiles in lps2

34 dt2=1p_dt(1p2); % integer

35 if 1p_vc(1lpl)==1p_vc(1p2) % Products correlate only if virtual channels are equal
36 ve=lp_vc(lpl);

37

38 apu=lp_dec(lpl)*dti*(addri-1p_ra(lp1))./lp_ri(1lpl);

39 time1=1p_t1(1lpl)+apu; % sampling time for the first product in 1pi
40 time2=1p_t2(1lpl)+apu; % sampling time for the second product in 1lpil
41 apu=lp_dec(1p2)*dt2*(addr2-1p_ra(lp2))./lp_ri(1p2);

42 taul=lp_t1(1lp2)+apu; % sampling time for the first product in 1p2
43 tau2=1lp_t2(1lp2)+apu; % sampling time for the second product in 1p2
44

45 for itime=0:1p_nfir(lp1)-1 % All the filter coeffs in 1lpl are treated here
46 for itau=0:1p_nfir(1lp2)-1 % All the filter coeffs in 1lp2 are treated here
47 erol=abs(taul+itau*xdt2-(timel+itime*dt1)); %

48 ero2=abs(time2+itime*dtl-(tau2+itau*dt2));

49 if erol<len & ero2<len

50 covi=covi+lp_fir(itime+1,1p1)*1p_fir(itau+l,lp2)*. ..

51 vc_signal(erol+1l,vc)*vc_signal(ero2+1,vc);

52 end

53

54 ero3=abs (tau2+itau*xdt2-(timel+itime*dt1));

55 erod4=abs (time2+itime*dtl-(taul+itau*dt2));

56 if ero3<len & ero4<len

57 cov2=cov2+lp_fir(itime+1,1p1)*1p_fir(itau+l,lp2)*. ..

58 vc_signal (ero3+1,vc)*vc_signal (erod+1,vc);

59 end

60 end

61 end

62

63 end % End-if of virtual channels

64 end % End-loop over lps2

65 end % End-loop over 1lps2

66

e covarRe=(covi+cov2)/2;

68 covarIm=(covli-cov2)/2;

Covariance matrices or variance vectores are produced by the following two functions. They call addr_covar
and also they initialize the vc_signal matrix. Their use is recommended.

/geo/gmt/askoh/guisdap/mi52/adgr_covar.m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% A function to calculate the error covariance matrix for two sets of result

% memory addresses. If the two sets are identical, only diagonal and upper

(or lower) triangle is calculated. The covariance calculations are performed
% by the routine addr_covar

% Input parameters:

% addrl: first set of result memory addresses

% addr2: second set of result memory addresses

Lo N L
o=

10 % T_noise: background temperature in K

11 % param: plasma parameters in scaled units

12 % vc_signal: signal strength for all virtual channels and for all lags (global)
13 % Output parameters

14 % covarRe: covariance between the real parts of the two sets

15 % covarIm: covariance between the imaginary parts of the two sets

16 % See also: addr_covar, adgr_var, calc_vcsignal, real_to_scaled

%function [covarRe,covarIm]=adgr_covar(addrl,addr2,T_noise,param)
function [covarRe,covarIm]=adgr_covar(addrl,addr2,T_noise,param)

W= e e
S © o -1

global vc_signal 1lp_vc lp_dt lp_ra lp_ri lp_nt 1lp_tl 1lp_t2 1lp_dec lp_nfir lp_fir
calc_vcsignal(addri(1),T_noise,param)

[SIRV]
[

covarRe=zeros(length(addrl) ,length(addr2));
covarIm=zeros(length(addrl) ,length(addr2));

[CEENINN]
A Q

% Execution time saved if both sets are equal as Cov(A,B)=Cov(B,A)

N
3

27 % Then only diagonal and upper (or lower) triangle calculated.
28 if length(addri)==length(addr2),

29 if all(addri==addr2), identical=1; else, identical=0; end

30 end

31

32 for i=1:length(addrl)

33 if identical, first=i; else, first=1; end

34 fprintf(’ %.0f’,i);

35 for j=first:length(addr2)

36 [covarRe(i,j),covarIm(i,j)]=...

37 addr_covar(addri(i),addr2(j),vc_signal,lp_vc,lp_dt,lp_ra,...

lp_ri,lp_nt,lp_t1,1lp_t2,1p_dec,lp_nfir,lp_fir);
if identical,
covarRe(j,i)=covarRe(i,j);
covarIm(j,i)=covarIm(i,j);
end

Aoa o W ow
VW= O 0 ®

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

43 end
44 end
45 fprintf(’ \n’)

/geo/gmt/askoh/guisdap/mi52/adgr_var.m
A

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

2 %

3 % A function to calculate the variance for a set of result memory addresses.
4 % The covariance calculations are performed by the routine addr_covar

5 % Input parameters:

6 % addr: set of result memory addresses

7 % T_noise: background temperature in K

8 % param: plasma parameters in scaled units

9 % vc_signal: signal strength for all virtual channels and for all lags (global)
10 % Output parameters

11 % varRe: covariance between the real parts of the two sets

-
N
o=

varIm: covariance between the imaginary parts of the two sets
See also: addr_covar, adgr_covar, calc_vcsignal, real_to_scaled
%function [varRe,varIm]=adgr_var(addr,T_noise,param)

function [varRe,varIm]=adgr_var(addr,T_noise,param)

e i
B - S
o=

global vc_signal 1lp_vc lp_dt lp_ra lp_ri lp_nt 1lp_tl 1lp_t2 1lp_dec lp_nfir lp_fir
calc_vcsignal(addr(1),T_noise,param)

=
© o

varRe=zeros(1,length(addr));
varIm=zeros(1,length(addr));

NN N
N o= O

for i=1:length(addr)
[varRe(i),varIm(i)]=addr_covar(addr(i),addr(i),vc_signal,lp_vc,lp_dt,lp_ra,...
lp_ri,lp_nt,lp_t1,1lp_t2,1p_dec,lp_nfir,lp_fir);

NN NN
> ok W

end

¥
3

Scaling of parameters

Only two of the six plasma parameters, the temperature ratio and the ion composition, are used as such
in the package and the rest are used as scaled. The following two routines will change from one set of
parameters to the other.

/geo/gmt/askoh/guisdap/mi52/real_to_scaled.m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
",
A
% Function to calculate the scaled variable values from physical ones
% Parameters:
physical: plasma parameters in physical units
% scaled: plasma parameters in scaled units
% See also: scaled_to_real
%function scaled=real_to_scaled(physical)
function scaled=real_to_scaled(physical)

[O I I N
o=

= =0
= o

global p_NO p_mO p_TO p_omO k_radarO

[
w N

scaled=physical; % affects element 3 and also 6 (if specified on input)
scaled(:,1)=physical(:,1)/p_NO;

scaled(:,2)=physical(:,2)/p_TO;

ch=1; % hyi hyi

scaled(:,4)=physical(:,4)/(p_om0O(ch));
scaled(:,5)=physical(:,5)/(p_omO(ch)/k_radarO(ch));

R
®© -1 O

/geo/gmt/askoh/guisdap/mi52/scaled_to_real.m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
",
A
% Function to calculate the plasma parameters in physical units
% when input is in scaled values
Parameters:
% physical: plasma parameters in physical units
% scaled: plasma parameters in scaled units
% See also: real_to_scaled
%function physical=scaled_to_real(scaled)
function physical=scaled_to_real(scaled)

[eR T L
o=

o= e
N o= o

global p_NO p_mO p_TO p_omO k_radarO

[
wow

physical=scaled; % affects element 3 and also 6 (if specified on input)
physical(:,1)=scaled(:,1)*p_NO;

physical(:,2)=scaled(:,2).%p_TO;

ch=1; % hyi hyi

physical(:,4)=scaled(:,4)*(p_omO(ch));
physical(:,5)=scaled(:,5)*(p_omO(ch)/k_radarO(ch));

e
© 0 - 3 o

34

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

Routines for processing results

The following routine initializes result parameters before analysis of a new integration dump is started.

/geo/gmt/askoh/guisdap/m152/clear_results .m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
",

% defines the result variable as empty matrices
% function clear_results
function clear_results

global r_ind r_range r_param r_error r_res r_status r_dp
global r_apriori r_apriorierror

e I R

10 r_ind=0;
11 r_range=[];r_param=[];r_error=[];r_res=[];r_status=[];r_dp=[];
12 r_apriori=[];r_apriorierror=[];

The following routine writes the result to a binary .mat file for each dump.

/geo/gmt/askoh/guisdap/mi52/save_resu1ts.m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
",

% function to store whole profile of results into a file

function save_results
function save_results

global result_path name_expr name_site

global p_XMITloc p_RECloc sc_angle

global d_time GUP_ver ch_az ch_el ch_Pt p_mO p_dtau v_lightspeed
global r_ver r_time r_az r_el r_Pt r_mO r_h r_SCangle

global r_ind r_range r_param r_error r_res r_status r_dp

global r_apriori r_apriorierror

global pp_range pp_sigma

© MmN O W N
==

N
TR W N RO

filename=’00000000" ;

if length(d_time)>0,
file=int2str(tosecs(d_time(2,:)));len=length(file);
filename(9-len:8)=file;

end

file=canon([result_path, filename]);

R R
Rk Do ® T

r_ver=GUP_ver;
r_time=d_time;
r_az=ch_az(1);
r_el=ch_el(1);
r_Pt=ch_Pt(1);
r_mO=p_mO;
r_XMITloc=p_XMITloc;
r_RECloc=p_RECloc;
r_SCangle=sc_angle/2;

WO oW WM NN NN N
[ERRECI =Rt SR G S)

r_pp=pp_sigma;
r_pprange=col(pp_range)*(p_dtau*le-6%v_lightspeed/2/1000) ;

w W ow
RS

r_h=col(range_to_height(r_range,ch_el(1)));
r_range=col(r_range)*(p_dtauxle-6*v_lightspeed/2/1000) ;

variables=[’r_ver name_expr name_site r_time r_az r_el r_Pt r_m0’];
variables= [variables ’ r_range r_h r_param r_error r_res r_status r_dp’];
variables= [variables ’ r_apriori r_apriorierror r_pp r_pprange ’];
variables= [variables ’ r_XMITloc r_RECloc r_SCangle’];

[N R
N o= O © ®

eval([’save ’, file, ’.mat ’ variables])
% save file name to "filelist.dat"
fprintf(canon([result_path ’filelist.dat’],0),[filename,’\n’]);

S
[S

The following initialized a sufficient number of graphic windows. The window positions are given in pixels.

/geo/gmt/askoh/guisdap/m152/init_graphics .m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% Init_graphics opens a sufficient number of figure windows.

% The sizes and locations are defined here.

Parameter:

% di_figures (global): requested windows (on input) and figure handles (on output)

Positions=...

[50, 50,550,300; Y% Correlator dump

50, 50,200,400; Y% Raw electron density
600,300,600,400; Y% Fit results
580,280,600,400]; % Results

Lol A O
==

= e e
W o= O

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

14 Names=. ..

15 [’Correlator dump, real part’;

16 ’ Raw electron density 5

17 > Fit results and quality ’;

18 ’ Results 1

19

20 undefined=di_figures;

21

22 unused=[];

23 for F=get(0,’Children’)’

24 if strcmp(get(F,’type’), ’figure’)==
25 UserData=get(F,’UserData’);

26 if length(UserData)==

27 if UserData>=1 & UserData<=4,

28 undefined(UserData)=0;

29 di_figures(UserData)=F;

30 else

31 unused=[unused, F];

32 end

33 else

34 unused=[unused, F];

35 end

36 end

37 end

38

39 for fig=find(undefined);

40 if length(unused),

41 F=unused(1);

42 unused(1)=[1;

43 else

44 F=figure;

45 end

46 figure(F), clf

47 di_figures(fig)=F;

48 set(F,’Position’ ,Positions(fig,:), ’NumberTitle’,’off’,’Name’ ,Names(fig,:), ’UserData’,fig);
49 set (F,’DefaultAxesFontName’ ,’helvetica’)
50 set (F,’DefaultTextFontName’,’helvetica’)
51 set (F, ’Defaul tAxesFontWeight’,’bold’)
52 set (F,’DefaultTextFontWeight’, ’bold’)
53 set(F, ’DefaultAxesFontSize’,14)

54 set(F, ’DefaultTextFontSize’,14)

55 end

A6

57 clear undefined Positions HNames UserData unused fig F

The following prints fitted plasma parameters for each gate (and plots them if display_figures(4)=1).

/geo/gmt/askoh/guisdap/m152/plot_result.m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% routine to produce a simple plot of the analysis results

% function plot_result(Handle,good_only)
function plot_result(Handle,good_only)

global r_param r_error r_dp r_status r_h r_el r_time

PR = T I I I VR

=
IS}

if nargin==2
ind=find(r_status==0) ;
if isempty(ind)
fprintf(’ No succesfull fits in the profile, plotting it anyway\n’)
ind=1:length(r_status);
end
else
ind=1:length(r_status);
end

e T R S =
e - N U R

r_Ne=r_param(ind,1)/1lell;
r_Ti=r_param(ind,?2);
r_ratio=r_param(ind,3);
r_coll=r_param(ind,4);
r_vel=r_param(ind,5);
r_dlle=r_error(ind,1)/1ell;
r_dTi=r_error(ind,2);
r_dratio=r_error(ind,3);
r_dcoll=r_error(ind,4);
r_dvel=r_error(ind,5);
r_comp=r_dp(ind);

h=r_h(ind);
minheight=10*floor(min(h)/10);
maxheight=10%*ceil (max(h)/10);

Wow oW W wWw NN NN NNNNNN
N R I B A I Ry =}

if nargin>=1,figure(Handle); else figure;end
set(gcf, ’NextPlot’, ’replace’) ;clf reset

w w
@ o

36

& GUISDAP documentation: analysis.tex FMI November 4, 1994 at 10.34

37 set (gcf,’PaperOrientation’,’landscape’,’PaperUnits’,’centim’,’PaperPos’,[0 2 25 18])
38

39 axes(’Position’,[.1 .1 .19 .8],’NextPlot’,’replace’)

40 p=plot(r_Ne,h,’go’,[r_Ne-r_dlle,r_We+r_dNe]’,[h,h]’>,’g-");

41 set(p,’MarkerSize’ ,4)

42 set(gca,’FontSize’,12)

43 xlabel(’Ne [1ell m-3]’)

44 ylabel(’Altitude [km]’)

45 set(get(gca,’Xlabel’),’FontSize’,12)

46 set(get(gca,’Ylabel’),’FontWeight’, ’bold’)

a7 ax=axis;ax(1)=0;ax(3:4)=[minheight maxheight];axis(ax);

48

49 axes(’Position’,[.3 .1 .19 .8],’NextPlot’,’replace’)

50 p=plot(r_Ti,h,’bo’,[r_Ti-r_dTi,r_Ti+r_dTi]’,[h,h]’,’b-’,r_Ti.*r_ratio,h,’rx’);
51 set(p,’MarkerSize’ ,4)

52 set(gca,’YTickLabels’ [’ ’],’FontSize’,12)

53 xlabel(’Ti(o), Te(x) [K]1’)

54 set(get(gca,’Xlabel’),’FontSize’,12)

55 ax=axis;ax(1)=0;ax(3:4)=[minheight maxheight];axis(ax);

A6

57 axes(’Position’,[.5 .1 .19 .8],’NextPlot’,’replace’)

58 p=plot(r_ratio,h,’go’,[r_ratio-r_dratio,r_ratio+r_dratio]’,[h,h]’,’g-’,...
59 [1,1], [minheight maxheight],’Linewidth’,0.5);

60 set(p,’MarkerSize’ ,4)

61 set(gca,’YTickLabels’,[’ ’],’FontSize’,12)

62 xlabel(’Te/Ti’)

63 set(get(gca,’Xlabel’),’FontSize’,12)

64 ax=axis;ax(3:4)=[minheight maxheight];ax(1)=0;ax(2)=max(min([ceil(max(r_ratio)),4]),2);axis(ax);
65

66 axes(’Position’,[.7 .1 .19 .8],’NextPlot’,’replace’)

67 p=plot(r_vel,h,’go’,[r_vel-r_dvel,r_vel+r_dvel]’,[h,h]’,’g-7,...
68 [0,0], [minheight maxheight],’Linewidth’,0.5);

69 set(p,’MarkerSize’ ,4)

70 set(gca,’YTickLabels’,[’ ’],’FontSize’,12)

71 xlabel(’Vi?)

72 set(get(gca,’Xlabel’),’FontSize’,12)

73 ax=axis;ax(3:4)=[minheight maxheight];axis(ax);

74

75 axes(’Position’,[.9 .1 .09 .8],’NextPlot’,’replace’)

76 p=plot(r_comp,h,’ro’);

77 set(p,’MarkerSize’ ,4)

78 set(gca,’YTickLabels’,[’ ’],’FontSize’,12)

79 xlabel(’ [0+]/He’)

80 set(get(gca,’Xlabel’),’FontSize’,12)

81 ax=[-0.1 1.1 minheight maxheight];axis(ax);

8’2

83 axes(’Position’,[.1 .1 .8 .8],’HNextPlot’,’add’)

84 set(gca,’Visible’, ’off’)

85 alku=r_time(1,:);loppu=r_time(2,:);

86 tit=[sprintf(’%2.0£/%2.0£/%4.0f’ ,alku(3) ,alku(2) ,alku(1)),...

87 sprintf(’ %2.0f:%2.0f:%2.0f’, alku(4),alku(5),alku(6)),...
88 sprintf(?-%2.0£:%2.0f:%2.0f’ ,1oppu(4),loppu(5),loppu(6))];
89 title(tit);

90 set(get(gca,’Title’), ’FontSize’,18, FontWeight’, bold’)

91

92 drawnow

Other routines

All the result memory addresses belonging to a specified set of lag profile groups is given by

/geo/gmt/askoh/guisdap/mi52/1pg_addr.m
1 % GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
%

2

3 % function returns the result memory addresses that belong to
4 % a lag profile group.

5 % function addr=1pg_addr(lpgs)

6

7 function addr=1pg_addr(lpgs)

8

9 global 1lpg_ra lpg_nt lpg_ri

10

11 addr=[];

12 for lpg=lpgs

13 addr=[addr,lpg_ra(lpg)+(0:1pg_nt(lpg)-1)*1pg_ri(lpg)];
14 end

