& GUISDAP documentation: GUP init.tex FMI November 4, 1994 at 11.09

GUISDAP Documentation
M. S. Lehtinen* and A. Huuskonen

* Sodankyla Geophysical Observatory, Sodankyla, Finland
** Finnish Meteorological Institute, Helsinki, Finland

The experiment initialization file

The GUISDAP experiment specification, explained in the document init_EISCAT, is a sufficient description
of an incoherent scatter experiment to serve as a starting point for the data analysis. It is practical, however,
to calculate the various ambiguity functions in advance and store those in a file, called the experiment
initialization file, for later use in the analysis. This results in great reductions in the analysis startup times.
The ambiguity functions thus calculated can also be used in the documentation of the experiment. The
variables are listed below.

General parameters
GUP_iniver Version number of GUISDAP
nameexpr Name of the experiment

Parameters defined for each virtual channel, the experiment has 12 virtual channels

vc_Aenv 600 by 12 Autocorrelation function of the envelope of the transmitted wave-
form
vc_Ap 126 by 12 Autocorrelation function of the receiver impulse response

vc_penv 600 by 12 Effective pulse form
vc_Apenv 600 by 12 Autocorrelation function of the effective pulse form
vc_penvabs 600 by 12 absolute value version of vc_penv for support calculations

vc_penvo 1 by 12 Range to the leading edge of the range ambiguity function
Parameters specified for each lag profile group, the present experiment has 120 lag profiles groups

lpg_ND 1 by 120 Number of crossed products

lpg_T 1 by 120 Common value of 1p_T(1pg)

lpg_bac 1 by 120 Background lag profile group for lpg
lpg_cal 1 by 120 Calibration lag profile group for Ipg
lpg_bcs 1 by 120 Type of profile, b=background, c=calibration, s=signal, o=offset,

x=multipulse zero lag
lpg_code 1 by 120 Label to group lag profiles, e.g. in CP11s 1 for 14us power profiles,

2 for multipulse profiles etc.
lpg_dt 1 by 120 Range increment [p_dtau]
lpg_h 1 by 120 Range to the center point of the range ambiguity function of the

first product
lpg_lag 1 by 120 Lag value, difference of 1p_t2 and 1p_t1

lpg_lpdata 1 by 318 Lag profile numbers ordered by lag profile groups
lpg_lpend 1 by 120 Start address for lag profile numbers in 1pg_lpdata
lpg_lpstartl by 120 Last address for lag profile numbers in 1pg_lpdata

lpg_nt 1 by 120 Number of points in the profile

lpg_ra 1 by 120 Result memory address of the first product
lpg_ri 1 by 120 Result memory address increment

lpg_w 1 by 120 Width of the range ambiguity function

lpg_wom 120by 121 Reduced spectral ambiguity function

Scales and other important parameters
p_No 1byl Electron density scale [m™3]
p_RO 1byl Range scale in units of p_dtau
p_TO 1byl Ion temperature [K]

& GUISDAP documentation: GUP init.tex FMI November 4, 1994 at 11.09

p_m0 1 by 2 Ton masses [u]

p_DO 1by1l Debye term based on scale variables

p_om 121 by 1 Frequency axis in units of p_om0

p_om0 1by1l Frequency scale

p_XMITloc 1 by 3 transmitter location [latitude (deg N), longitude (deg E), altitude (km)]
P_RECloc 1 by 3 receiver location [latitude (deg N), longitude (deg E), altitude (km)]

Producing initialization file from general GUP variables

The initialization file 1s produced by the program init_GUP. The following explains the program execution
(numbers refer to lines):

- load the GUISDAP variables from file

- findlpg groups lag profiles to lag profile groups. A lag profile group contains all the lag
profiles which are summed to same memory locations.

- find_vcgroups checks which virtual channels have identical transmission and receiver
impulse response. This makes many subsequent operations faster

- find_calibrations finds the calibration and background lag profile groups for each
group.

- ambcalc calculates the effective pulse forms (convolution of the transmitter envelope
with the receiver impulse response) and the autocorrelation functions of the transmitter
envelopes and receiver impulse responses for each virtual channel (ve_penv, ve_Aenv and
ve_Ap)

- lpgwrcalc makes the range ambiguity functions for the signal lag profile groups and
calculates the distance to the first gate (1pg_h) and the width of the range ambiguity
function (1pg_w). It also makes a Postscript file for plotting of the range ambiguity
functions.

- lpgwomcalc calculates the spectral ambiguty functions for all signal lag profile groups
(1pg_wom).

- 1pg_tex makes a TEX—file containing lag profile group parameters

- save results to a file.

/geo/gmt/askoh/gulsdap/m152/1n1t GUP.m

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

2 %

3 % Main program to find lag profile groups and calculate ambiguity functions

4 % Script and functions called:

5 % load_GUPvar : load GUISDAP experiment definition variables from a file

6 % read_specpar: defines the scale parameters and spectral grid

7 % findlpg : lag profile groups are formed here

8 % find_vcgroups : similar virtual channels are grouped together

9 % find_calibrations : associates lpg’s with calibration and background lpg

10 % ambcalc : vc_Aenv vc_Ap vc_Apenv matrices formed

11 % lpgwrcalc : calculation of the range ambiguity functions

12 % lpgwomcalc : calculation of the reduced spectral ambiguity functions

13 % save_toinitfile : saves the variables to a file

14 ./-

15 % See also: load_GUPvar read_specpar nat_const constants lpg_tex save_toinitfile
16 ./-

17 % See also: findlpg find_vcgroups find_calibrations ambcalc lpgwrcalc lpgwomcalc

[
© »

clg, hold off
glob_GUP

[CIN]
= o

% Chdir to the experiment directory, store the present path as a return address
original_path=pwd;

fprintf(’\n\nChdir to the experiment directory\n’)

cdir(canon(path_expr))

NN N NN
o N

nat_const

NN
»

if exist(’N_rcprog’)~=1, N_rcprog=1; end
for d_rcprog=1:N_rcprog
Stime=clock;

W oW oW N
IS)

& GUISDAP documentation: GUP init.tex FMI November 4, 1994 at 11.09

33 if N_rcprog>1, apustr=[’_’,int2str(d_rcprog)]; else apustr=[]; end

34 load_GUPvar

35

36 read_specpar

37 constants

38

39 findlpg

40 find_vcgroups

41 find_calibrations

42 ambcalc,

43

44 if all(p_XMITloc==p_RECloc) % Monostatic case

45 lpgwrcalc,

46 lpgwomcalc,

a7 else

48 % Assume that the scattering volume is always completely filled

49 disp([’ Bistatic measurement:’])

50 vc_Aenv=ones(600,length(vc_ch)); % For unit length

51 fir=1lp_fir; 1lp_fir=abs(1lp_fir);

52 lpgwomcalc,

53 lp_fir=fir;vc_Aenv=zeros(size(vc_env));

54 end

55

56 plot(p_om,real(lpg_wom)), drawnow

57 lpg_tex

58 fprintf(’ Time used in initialisation:%8.2f min\n’,etime(clock,Stime)/60)
59 save_toinitfile

60

61 fprintf(’Radar controller program %g ready\n’,d_rcprog)

62 end

63 fprintf([’\nChdir back to the original directory ’, original_path,’\n’])
64 cdir(original_path)

65 FPrintf (O \nkkskokkokskok ks kokdokok o skok ok ok sk ok ok sk koK ok ok ok ok ko sk kK ok Kbk kR \ 1))

66 fprintf (’*\n*\n* Execute plot_wr to see the range ambiguity functions\n’)
67 Fprint£ (7% \nk \nskkkokokd kokokodkokokokok ok kokok dokokoskokskokok ok okokok kb ko kokokokokkkok ok kokk ok \n 7)
68 clear original_path Stime d_rcprog

Routines called by the initialization

This is a function that returns the ACF of the transmission waveform on basis of the variable ve_Aenv. We
need this, because we do not want to think about index calculations each time we need the variable for some
time interval.

/geo/gmt/askoh/guisdap/mi52/Aenv.m
A

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

2 %

3 % value of ACF of transmitter envelope for virtual channel ’vch’ and time lag ’t’
4 % This if the preferred way of referencing matrix vc_Aenv, which contains the function
5 % for only non-negative values of ’t’. Also possible references beyond the matrix
6 % index limits are hanled. The function also takes care of the fact that

7 % the value of ACF at lag O is stored at Matlab matrix index 1.

8 % Parameters

9 % vch : virtual channel numbers

10 % t: lag values, any value permitted

11 ./-

12 % See also: Ap Apenv

13 ./-

14 % function res=Aenv(vch,t);

function res=Aenv(vch,t);

oo e
D o,

global vc_Aenv

n

t=abs(t(:))+1;
[len,hups]=size(vc_Aenv);
ii=find(t>len);
t(ii)=len*ones(length(ii),1);
res=vc_Aenv(t,vch);

[SEECEE VIR VI
@ R = O ©

The following routine calculates many ambiguity functions and related functions that are useful to have in
the workspace.

/geo/gmt/askoh/guisdap/mi152/ambcalc.m

% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
L}

%

lvc=length(vc_ch);

lenenv=length(vc_env(:,1));

lenp=length(vc_p(:,1));

vc_Aenv=zeros(lenenv,llvc);

vc_penv=zeros(lenenv+lenp-1,lvc);

vc_Apenv=zeros(lenenv+lenp-1,lvc);

[B N S

& GUISDAP documentation: GUP init.tex FMI November 4, 1994 at 11.09

9 vc_penvabs=zeros(lenenv+lenp-1,lvc);

10 vc_Ap=zeros(lenp,livc);

11

12 fprintf (O #\n#\n# Ambcalc: \n’)

13 fprintf(’# calculating ACF’’s of transmission envelopes\n’)

14 fprintf(’# calculating ACF’’s of filter impulse responses\n’)

15 fprintf(’# calculating effective pulseforms etc\n#\n’)

16

17 for group=diff_val(vc_group)

18 ves=find(vc_group==group) ;

19 ve=ves(1);

20

21 fprintf (’#Virtual channel group %.0f, formed by channels:’, group);
22 fprintf(’ %.0f’,vcs); fprintf(’\n’)

23

24 ind=1:max(find(vc_env(:,vc) “=0)) ;env=vc_env(ind,vc);

25 ind=1:max(find(vec_p(:,vc)"=0)); imp=vc_p(ind,vc);

26 Aenv=xcorr(env) ;

27 len=ceil (length(Aenv)/2);

28 vc_Aenv(l:len,vcs)=Aenv(len:2*len-1)*ones(size(vcs));

29 plot((-(len-1):1len-1)#*p_dtau,Aenv); title(’ ACF of X-mission envelope’)
30 drawnow

31

32 Ap=xcorr(imp) ;

33 len=ceil (length(Ap)/2);

34 vc_Ap(1l:len,vcs)=Ap(len:2*len-1)*ones(size(vcs))

35 % plot((-(len-1):len-1)#*p_dtau,Ap), title(’ ACF of filter impulse response’)
36 drawnow

37

38 penv=conv{(imp,env) ;

39 Apenv=xcorr(penv);

40 len=length(penv);

41 vc_penv(l:len,vcs)=penv¥ones(size(vcs));

42 vc_Apenv(l:len,vcs)=Apenv(len:2*len-1)*ones(size(vcs));

43 % plot((0:len-1)*p_dtau,penv); title(’ effective pulse form’)

a4 drawnow

45

46 % calculate the same using absolute values of env and p; used later
47 % for ambiguity function support calculations

18 penv=conv(abs(imp) ,abs(env));

49 len=length(penv);

50 vc_penvabs(1l:len,vcs)=penv¥ones(size(vcs));

51 vc_penvo(vecs)=vc_envo(vcs)+l;

52

53 end

54 fprintf (P #\n#pulseforms calculated\n#¥\n#\n’),

55 clear Nvc vc len Apenv Aenv Ap penv env imp ind lenenv lenp group

Ap and APenv are the same as Aenv, but for receiver impulse response and the effective pulse form.

/geo/gmt/askoh/guisdap/m152/Ap.m
A

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

2 A

3 % value of ACF of receiver impulse response for virtual channels ’vch’ and time lags ’t’
4 % This if the preferred way of referencing matrix vc_Ap, which contains the function
5 % for only non-negative values of ’t’. Also possible references beyond the matrix

6 % index limits are hanled. The function also takes care of the fact that

7 % the value of ACF at lag O is stored at Matlab matrix index 1.

8 % Parameters

9 % vch : virtual channel numbers

10 % t: lag values, any value permitted

11 ./-

12 % See also: Aenv Apenv

13 ./-

14 % function res=Ap(vch,t);

function res=Ap(vch,t);

oo e
D o,

global vc_Ap

n

t=abs(t(:))+1;
[len,hups]=size(vc_Ap);
ii=find(t>len);
t(ii)=len*ones(length(ii),1);
res=vc_Ap(t,vch);

[SEECEE VIR VI
@ R = O ©

The following gives the transmission envelope for any time interval.

/geo/gmt/askoh/guisdap/m152/env.m
1 % GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% value of pulseform for virtual channel ’vc’ and time instant ’t’

This if the preferred way of referencing matrix vc_env, which contains the
% functions at offsetted time values.

% Parameters

o ot W
o=

& GUISDAP documentation: GUP init.tex FMI November 4, 1994 at 11.09

7 % vc : virtual channel numbers
8 % t: time instants, any value permitted
9 %

10 % See also: penv

11 % function res=env(vc,t);

12 function res=env(vc,t);

13

14 global vc_env vc_envo

15

16 [len,hups]=size(vc_env);

17 t=t-vc_envo(vc);

18 iin=find(t>=1 & t<=len);

19 if length(iin)>O0,

20 res=zeros(size(t));

21 res(iin)=vc_env(t(iin),vc);
22 else

23 res=[];

24 end

In find_calibrations, we try to assign a background and calibration lag profile group to each group. We
require that a calibration group is found for every group, but not the existence of a background group. The
most evident examples of the latter case are the signal lag profile groups obtained from alternating codes.

/geo/gmt/askoh/guisdap/m152/find_calibrations.m
A

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

2 %

3 % Script to associate each lag profile groups with its background and

4 % calibration groups. Guisdap required that a calibration group is found

5 % It is not necessary to find a background groups exists, if the lag value
6 % is non-zero

7 %

8 % See also: init_GUP

° %

10 % find_calibrations.m

[
O
o=

The program logic is based on treating one lpg_code value at a time
fprintf(’\nLooking for calibration and background\n\n’)
codes=sort(lpg_code) ;

codes (find (diff(codes)==0))=[]1; % find all different values

e
4 oo W

% lpg_bac stores the background lag profile group number (O means no background)
% lpg_cal stores the calibration lag profile group number
lpg_bac=zeros(size(lpg_ra));

lpg_cal=zeros(size(lpg_ra));

for code=codes;

NN NN R e
@R RO © ®

% First we look for background and calibration measurements with the same code number
sig_gr=find(lpg_code==code & lpg_bcs==’s’);
xxx_gr=find(lpg_code==code & lpg_bcs==’x’);
bac_gr=find(lpg_code==code & lpg_bcs==’b’);

[FEECIN)
o O R

27 cal_gr=find(lpg_code==code & lpg_bcs==’c’);

28 off_gr=find(lpg_code==code & lpg_bcs==’0’);

29 all_gr=[bac_gr, cal_gr, sig_gr, xxx_gr, off_grl;

30 % If no calibration data for a code, look for other codes, which

31 % might be on the same real channel. If any is found, use their calibrations.

32 if length(cal_gr)==0,

33 ch=diff_val(vc_ch(lp_vc(lpg_lp(sig_gr(1))))); % These are the real channels used
34 for other=codes(find(codes =code))

35 lpg_other=find(lpg_code==other);

36 ch_other=diff_val(vc_ch(lp_vc(1pg_lp(lpg_other(1))))); % These are channels used
37 if length(ch)==length(ch_other) % Make sure that same channels are used

@
o

if all(ch==ch_other) % Continue testing
bac_gr=find(lpg_code==other & lpg_bcs==’b’);
cal_gr=find(lpg_code==other & lpg_bcs==’c’);
if length(cal_gr)>0, % Be happy, if calibration group was found
fprintf(’ Using calibrations of group %g for group %g\n’,other,code)
break,
end
end
end
end
end

L S O e A N
© 0 % 4D R W RO O

'/.******* find background LPG for all LPG:s %% 3k %%k k% ok kkk %k kk %k kok k&
for lpg=all_gr,
% bac contains all possible background measurements for the given lpg
bac=find(abs(lpg_lag(bac_gr)-1pg_lag(lpg))<=1000%*eps) ;
lenbac=length(bac);
% Study first the case when at least one background measurement was found
if lenbac>=1,
if lenbac>1
fprintf(’\n More than one background lag profile group found for lpg %3.0f\n’,lpg)
fprintf(’> Background groups are:’),fprintf(’ %.0f’, bac_gr(bac))

A B S S
RN G- S S O

& GUISDAP documentation: GUP init.tex FMI November 4, 1994 at 11.09

60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T

\n\n’)

fprintf(’\n Sorry, but only one can be used at present, taking the first one\n\n’)
bac=bac(1);
end
1pg_bac(lpg)=bac_gr(bac);
% If background not found, use offset for non-zero lags, if it exists
% This background system is used in many uniprog-type experiments
% UHF1 and UHF2, ELSA-T4, UP3A (=GEN6B)
% UP3A has two offset profiles, use the latter which is completely
% free of signal contributions.
elseif lenbac==0 & lpg_lag(lpg)>0 & length(off_gr)>0;
len=length(off_gr);
1pg_bac(lpg)=off_gr(len);
% ALTERNATING code (and multipulse) experiments do not need background for non-zero lags
elseif lenbac==0 & lpg_lag(lpg)>0
fprintf(’ No background for 1lpg %3.0f, lag value %3.0f us\n’,lpg,lpg_lag(lpg)*p_dtau)
elseif lenbac==0 & lpg_lag(lpg)==0 % Something in error in the background measurement
fprintf(’\nERROR: No background measurement found for lpg %3.0f\n’,lpg)
fprintf(’ The lag value of this lpg is zero and\n therefore data will be regarded as garbagelll

if lpg_becs(lpg)==’c’; % Remove from the calibration group
ind=find(cal_gr==1pg) ;cal_gr(ind)=[];
end
1lpg_bcs(lpg)=’g’;
end
end

%*x*x*x*k* find the LPG that gives the calibration power *¥kkkkik*x*
cal=find(lpg_lag(cal_gr)==0);
if length(cal)==0,
fprintf(’\nERROR: No calibration found for code %3.0f, formed by lag profile groups\n’,code)
fprintf(’ %.0f’, sort(all_gr))
fprintf(’\n Treating these lag profile groups as garbage\n\n’)
lpg_bcs(all_gr)=’g’*ones(1l,length(all_gr));
else,
if length(cal)>1
fprintf(’\n More than one calibration lag profile group found for code %3.0f\n’,code)
fprintf(’> Calibration groups are:’) ,fprintf(’> %.0f’, cal_gr(cal))
fprintf(’\n Sorry, but only one can be used at present, taking the first one\n\n’)
cal=cal(1l);
end
% Store the found calibration 1lpg to all lag profile groups with this code number
1pg_cal(all_gr)=cal_gr(cal)*ones(1,length(all_gr));
end

end
fprintf(’\n. .. Calibration and background 1lpg’’s located\n\n’)

clear all_gr sig_gr xxx_gr bac_gr cal_gr off_gr code codes cal bac lenbac len lpg
clear ch lpg_other ch_other other_codes other

The following script finds lag profile group parameters. We suppose here that if two lag profiles have the same
1p_ra, they belong to the same lag profile group (that is; the parameters 1p_nt and 1p_ri are also equal
and no other lag profiles overlap those with a single fixed 1p_ra). This simplified idea does not necessarily
work for all experiments, and this should be generalized.

/geo/

[- B S S

NONN NN NN R B R B R e R e e
Lo N R R e s RN B (S R R S =)

gmt/askoh/guisdap/m152/findlpg.m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% Produce the lag profile groups.

% We assume that two lag profiles belong to the same lag profile group

% if the start addresses lp_ra agree. The program checks that various other
% parameters are equal in the lag profiles. A hidden assumption is that

% addresses attached to a lag profile group do not belong to any other group.

% See also: init_GUP
L}
A
fprintf([’\n\nProducing the lag profile groups: ...\n\n’])
lpg_ra=diff_val(lp_ra); % find all different values
len=length(lpg_ra);
lpg_lag=zeros(1,len);lpg_dt=zeros(1,len);lpg_lID=zeros(1,len);lpg_T=zeros(l,len);
lpg_ri=zeros(1l,len); lpg_nt=zeros(1l,len);lpg_h=zeros(l,len);lpg_w=zeros(l,len);
lpg_bcs=zeros(1l,len) ;1lpg_code=zeros(l,len);
lpg_lpdata=zeros(l,len); lpg_lpind=0;
lpg_lpstart=zeros(1,len); lpg_lpend=zeros(l,len);
ad_1pg=[];
for ind=1:length(lpg_ra),
lpg=find (1p_ra==1pg_ra(ind));
lenlpg=length(1lpg);
1pg_lpdata(lpg_lpind+(1:lenlpg))=1pg;
lpg_lpstart(ind)=lpg_lpind+1; lpg_lpend(ind)=lpg_lpind+lenlpg;
1pg_lpind=1pg_lpind+lenlpg;
lpg_lag(ind)=cheq(1lp_t2(lpg)-lp_t1(1lpg));

& GUISDAP documentation: GUP init.tex FMI November 4, 1994 at 11.09

27 1pg_dt (ind)=cheq(1lp_dt (1pg) .*1p_dec(lpg));

28 1pg_ND(ind)=sum(sum(abs(lp_fir(:,1pg))));

29 1pg_T(ind)=cheq(1p_T(1pg));

30 1pg_ri(ind)=cheq(1p_ri(lpg));

31 1pg_nt (ind)=cheq(1lp_nt (1pg));

32 1pg_h(ind)=mean(1lp_h(1lpg));

33 % note that this range value will be updated for signal lag profiles
34 % after the range ambiguity functions are calculated

35 1pg_bcs(ind)=cheq(lp_bcs(lpg)) ;

36 1pg_code(ind)=cheq(lp_code(lpg));

37

38 fprintf([’lpg=%3 0f code=%1.0f type=’,setstr(lpg_bcs(ind))],ind,lpg_code(ind));
39 fprintf(’ lag=%3.0f dt=%3.0f’, p_dtauxlpg_lag(ind), p_dtau*lpg_dt(ind));
40 fprintf (> WD=%2.0f h=%5.0f’>, 1pg_ND(ind), p_ dtau*lpg_h(ind));

41 fprintf(’ T=%3.0f nt=%3.0f’, 1pg_T(ind), 1lpg_nt(ind));

42 fprintf(’ ra=%3.0f ri=%2.0f’,lpg_ra(ind), 1lpg_ri(ind));

43 fprintf(°\n’);

44

45 addr=1pg_addr(ind) ; sto=addr+1;

46 if max(sto)>length(ad_lpg); ad_lpg(max(sto))=0; end

a7 ind=find(ad_lpg(sto)~=0);

48 if length(ind)>0,

49 fprintf(’\n\n Conflict in the lag profile definition\n’)

50 fprintf(’ Lag profile group %.0f\n tries to define addresses\n’,ind)
51 fprintf(’> %5.0f’,addr(ind))

52 fprintf(’\n which already belong to lag profile groups\n’)

53 fprintf(’ %5.0f’,ad_lpg(sto(ind)))

54 fprintf(’\n’)

55 error(’)

56 else

57 ad_lpg(sto)=ind*ones(size(addr));

58 end

59 end;

60 clear 1pg ind len lenlpg lpg_lpind addr sto ad_lpg

For a specified memory location, the following routine returns all lag profiles that are summed to that
location. The routine also returns corresponding product sample times and the virtual channel.

/geo/gmt/askoh/gulsdap/mi52/f1ndrg m
GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% findrg.m

% Function to find all lag profiles contributing to a result
memory location m

% [1p,t1,t2,vc]=findrg(m)

© M e W N
o=

function [1p,t1,t2,vc]=findrg(m)

o= e e
w N o= O
o~

global 1p_ra lp_nt lp_ri 1p_t1 1lp_dt 1lp_t2 lp_vc

IS

1p=find(1lp_ra<=m & m<=1lp_ra+((lp_nt-1) .*1lp_ri) ...
& round((m-1p_ra)./lp_ri)==(m-lp_ra)./lp_ri);
if nargout>1
t1=1p_t1(1p)+1p_dt(1lp) .*(m-1p_ra(lp))./lp_ri(1lp);
t2=t1+1p_t2(1p)-1lp_t1(1p);
ve=lp_vc(lp);
end

e i
= 0 © ® O o

Many of the virtual channels often have similar transmitter envelopes and similar receiver impulse responses.
The immediate consequence is that the ve_Aenv, ve_Ap, ve_penv and vc_Apenv functions are also similar.
Also, calculation of the range ambiguity functions and spectral ambiguity functions is faster, if the similarity
of the virtual channels is taken into account. In the next routine, we group the virtual channels together so
that the subsequent calculations would be faster. It would be possible to reduce the size of the initialization
file by storing certain functions only once for each group. This has not yet been implemented.

/geo/gmt/askoh/guisdap/m152/find_vcgroups.m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% Several virtual channels often have similar transmission envelopes and receiver
% impulse responses. It will make the program execution faster, if ambiguity
function calculations are done only once for all these channels. This function
% checks the envelopes and impulse responses and form the virtual channel groups

% See also: init_GUP

© MmN O W N
o=

10 fprintf(’\n\nGrouping the virtual channels in virtual channel groups.\n’)
11 vc_group=zeros(size(vc_ch));

& GUISDAP documentation: GUP init.tex FMI November 4, 1994 at 11.09

13 group=1;

14 vcs=find(vc_ch™=0); % These channels are in use

15 while length(vcs)>O0,

16 ve=ves(1);

17 index=find (max(abs(vc_env(:,vcs)-vc_env(:,vc)*ones(1l,length(vcs))))<100*eps ...
18 & max(abs(vc_p(:,ves)-ve_p(:,vc)*ones(1l,length(vcs))))<100*eps);
19 ve_group(ves(index))=group*ones(size(index)) ;

20 fprintf(’ Group %.0f contains virtual channels ’,group);

21 fprintf(’ %.0f’,vcs(index)); fprintf(’\n’)

22 group=group+l;

23 vcs(index)=[]1;

24 end

All necessary globals definitions:

/geo/gmt/askoh/guisdap/mi52/glob_GUP.m

1 ! GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
2 ? 411 the global variables needed to run init_GUP

z ? See also: globals, glob_EISCAT, start_GUP, init_GUP

i élobal ch_adcint ch_filter ch_fradar ch_gain p_XMITloc p_RECloc

: global 1p_t1 1p_t2 1lp_dt 1lp_nt lp_vc lp_ra lp_ri

=
IS}

global 1p_T lp_code 1lp_bcs 1p_h 1p_nfir lp_fir lp_dec
global 1lpg_lag lpg_dt lpg_nt lpg_ra lpg_ri 1lpg_T lpg_code 1lpg_bac lpg_cal
global 1lpg_bcs 1pg_h lpg_w lpg_ND lpg_wom lpg_wr lpg_lpdata lpg_lpstart lpg_lpend

== R e
[O

global k_radarO p_om p_dtau p_TO p_NO p_DO p_mO p_omO p_RO p_rep

[
o o

global vc_ch vc_p vc_env vc_envo vc_Aenv vc_Ap vc_penv vc_Apenv vc_penvabs vc_penvo vc_group
global vc_sampling %AH 940802

=
3

Loading of the GUISDAP variables is done by

/geo/gmt/askoh/guisdap/mi52/load_GUPvar.m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
",
A
% A script to load GUPvariables into the workspace
% The script assumed that variables name_expr and name_site exist in the workspace
The script contains reference to EISCAT remote sites. However, the script works
% without modifications for other radars as long as name_site is different from K and S

[O I I N
o=

% See also: path_expr save_toinitfile

©
o=

=)

temp=[path_expr name_expr, name_site];

if name_site==’K’ | name_site==’8’;
temp=[path_expr name_expr ’R’];

end

if exist(’d_rcprog’)==1, rcp=d_rcprog; else rcp=0; end

if exist(canon([temp ’_’ int2str(rcp) ’GUPvar.mat’],0))==2,
eval(canon([’load ’> temp ’_’ int2str(rcp) ’GUPvar’]))

elseif exist(canon([temp ’GUPvar.mat’],0))==2,
eval(canon([’load ’> temp ’GUPvar’]))

else
fprintf([’\n\n\n GUP variable file >, canon([temp ’GUPvar.mat’],0),’ not found \n\n\n’])
error(’)

end

if GUP_iniver<1.52,
fprintf (’*\n¥\n* Files produced by GUP version %.2f not usable\n’, GUP_iniver)
fprintf(’* Please, reinitialize the experiment with GUP 1.52 or later\n*\n*\n’)
error(’’)

end

if exist(’lp_firsto’)
lp_fir=cumsum(full(lp_firsto));

end

clear rcp

WOWw oW NN NN DN N DR R R e o e e
[R I R e I A A I R e R R T

The following routine gives all lag profile numbers that belong in a lag profile group.

/geo/gmt/askoh/guisdap/mi52/1pg_1p.m
4\ GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% lpg_1lp.m
% Gives the lag profiles that belong to a lag profile group
function 1p=lpg_lp(lpg)

function lp=lpg_lp(lpg)

R O N
o=

global lpg_lpdata lpg_lpstart lpg_lpend
1p=1pg_lpdata(lpg_lpstart(1lpg):1lpg_lpend(lpg));

=
IS}

& GUISDAP documentation: GUP init.tex FMI November 4, 1994 at 11.09
The following routine creates a .tex-file that can be used in documentation of lag profile groups.

/geo/gmt/askoh/guisdap/mi52/1pg_tex.m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
%

% Script to write TeX data about lpg_ parameters

% suitable to be printed with tex code in file lpg.tex

% See also: init_GUP
fil=canon([path_expr name_expr name_site apustr ’lpg_i.tex’]);
if exist(£fil)==2, delete(fil), end

R - A I VI
o=

for ind=1:length(1lpg_ND)
fprintf(£il, ’\\+%3.0f&’,ind);
fprintf(£il,’%2.0f&’,1pg_code(ind));
fprintf(£il,[’ ’,setstr(lpg_bcs(ind)),’& ’1);
fprintf(£fil,’%3.0f&’,1pg_lag(ind)*p_dtau);
fprintf(£il,’%6.0f&’ ,1pg_h(ind)*p_dtau);
fprintf(£il,’%6.0f&’ ,1pg_w(ind)*p_dtau);
fprintf(£il,’%3.0f&’ ,1pg_dt(ind)*p_dtau);
fprintf(£il,’%3.0f&’,1pg_lD(ind));
fprintf(£il,’%3.0f&’,1pg_T(ind));
fprintf(£il,’%3.0f&’,1pg_nt(ind));

[R = R S IR S
[R O T VI =)

21 fprintf(£fil,’%4.0f&’,1pg_ra(ind));

22 fprintf(£il, ’%4.0f\\cr\n’,1pg_ri(ind));
23 end;

24 closefile

25 clear fil ind

Calculation of spectral ambiguity function for a lag profile group:

/geo/gmt/askoh/guisdap/mi52/1pgwom.m

1 % GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
",

A

2

3 % function that calculates the reduced spectral ambiguity function
4 % lpg : lag profile group number

5 % womsum : reduced spectral ambiguity function

6 %

7 % See also: lpgwomcalc wl

8 %

9 % function womsum=1lpgwom(lpg) ;

=
IS}

function womsum=lpgwom(lpg) ;

[
|-

global p_om p_dtau p_omO 1lp_t1 1p_t2 lp_vc lp_nfir 1lp_fir vc_group
womsum=zeros (size(p_om))’;
dt=-5000;wc=-1;
for 1p=lpg_lp(lpg),
% disp(lp),
used_oldvalues=0;
+2=1p_t2(1p);t1=1p_t1(1lp) ;vc=1p_vc(lp);
if (dt==t2-t1 & vc==wc)
womsum=womsum+sum(1lp_fir(:,1p))*wold; used_oldvalues=1;
elseif (dt==t2-tl1 & wc>0 & vc =wc)
if vc_group(vc)==vc_group(wc),
womsum=womsum+sum(1lp_fir(:,1p))*wold; used_oldvalues=1;
end
end
if used_oldvalues==0,
dt=t2-t1;
[w,wx]=wl(vc,dt);
ind=find (¥~=0) ; w=w(ind); wx=wx(ind);
ch=1; Y% hyi hyi
wnew=sum((w*ones(size(p_om))’) .*exp(wx*p_om’*(p_dtauxle-6%p_omO(ch)*sqrt(-1))));
womsum=womsum+sum(lp_fir(:,1p))*wnew;
Wwc=vc;wold=wnew;
end
end

WOW W W W W NN NN N DN NN N R R S e e e
RO R RO OO0 R A XN RO WO® 0 AW

Calculation of spectral ambiguity functions for all signal lag profile groups in the workspace.

/geo/gmt/askoh/guisdap/mi52/lpgwomcalc.m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
%
% script to calculate the spectral ambiguity functions for all signal 1lpg’s
%
% See also: lpgwom
lpg_wom=zeros(length(lpg_bcs) ,length(p_om));
fprintf (’\n#\n* Calculating spectral ambiguity functions for signal lpg:s\n*\n%x’);

LI A S

for lpg=find(lpg_bcs==’s’);
fprintf(’ %.0f’,1pg),
1lpg_wom(lpg,:)=lpgwom(lpg) ;
end
fprintf (’\n#¥\n* spectral ambiguity functions calculated\n*\n’)

o= e
w v R O

& GUISDAP documentation: GUP init.tex FMI November 4, 1994 at 11.09

14

clear lpg

The following gives the amplitude range ambiguity for any time interval.

/geo/gmt/askoh/guisdap/mi52/penv.m

L S I S

O I e e N el
N I - T]

4\ GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% value of effective pulseform for virtual channel ’vc’ and time instant ’t’
% This if the preferred way of referencing matrix vc_penv, which contains the
% functions at offsetted time values.

% Parameters

% vc : virtual channel numbers

% t: time instants, any value permitted

% See also: env
% function res=penv(vc,t);
function res=penv(vc,t);

global vc_penv vc_penvo

[len,hups]=size(vc_penv);
t=t-vc_penvo(vc);
iin=find(t>=1 & t<=len);
if length(iin)>O0,
res=zeros(size(t));
res(iin)=vc_penv(t(iin),vc);
else
res=[];
end

The following routine saves initialization results in the init.m-file.

/geo/

Lo B R N

gmt/askoh/guisdap/mi52/save_toinitfile .m

% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
%

% Script to save ambiguity functions and other variables to a file

% These variables are needi in the data analysis

%

% See also: load_initfile save_GUPvar load_GUPvar path_expr

GUP_iniver=GUP_ver;
nameexpr=[name_expr name_site];

% We produce groupwise variables to save disk space
[a,ind]=wind (diff_val(vc_group) ,vc_group);
vcg_Aenv=vc_Aenv(:,ind);

veg_Ap=vc_Ap(:,ind);

vcg_Apenv=vc_Apenv(:,ind);

vcg_penv=vc_penv(:,ind);
vcg_penvabs=vc_penvabs(:,ind);

str="GUP_iniver ch_fradar ch_gain 1lp_vc 1lpg_ND 1lpg_T lpg_bcs lpg_code lpg_lpstart lpg_lpend’;
str=[str ’ lpg_lpdata lpg_dt lpg_h lpg_lag lpg_nt lpg_ra lpg_ri lpg_w lpg_wom lpg_bac lpg_cal’];
str=[str ’ nameexpr p_XMITloc p_RECloc p_DO p_NO p_RO p_TO p_dtau p_mO p_om p_om0’];

%str=[str ’> vc_penv vc_penvabs vc_penvo’]; % these saved once for each vc_group

%str=[str > vc_ch vc_Aenv vc_Ap vc_Apenv vc_group’]; % these saved once for each vc_group
str=[str ’ vcg_penv vcg_penvabs vc_penvo’];

str=[str ’ vc_ch vcg_Aenv vcg_Ap vcg_Apenv vc_group’];

if “exist(’apustr’), apustr=’’; end

eval([canon([’save ’ path_expr name_expr name_site apustr ’init.mat ’]), str]);

clear GUP_iniver nameexpr a ind vcg_Aenv vcg_Ap vcg_Apenv vcg_penv vcg_penvabs

The following gives the lag ambiguity function and its support for a given lag and virtual channel.

/geo/gmt/askoh/gulsdap/mi52/W1 m

IR -, S S S

e e
4 oA W N RO

GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
% short form of the reduced lag ambiguity function
% ve: virtual channel number
% lag lag value
% w : lag ambiguity function
% 1 : lag ambiguity function support
% plot(l*p_dtau,w) shows the function with correct lag values in us
% See also: lpgwom Wr Ap Aenv

% function [w,1]=wl(vc,lag)
function [w,1]=wl(vc,lag)

global vc_Ap

len=length(vc_Ap(:,vc));

10

& GUISDAP documentation: GUP init.tex FMI November 4, 1994 at 11.09

18 1=((lag-len+1): (lag+len-1))’;
19 w=Ap(vc,l-lag).*Aenv(vc,l);

Range ambiguity function and its support for a given virtual channel and sample time pair:
/geo/gmt/askoh/guisdap/m152/wr.m
1 b

GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
%

2

3 % function to calculate range ambiguity function

4 % Parameters:

5 % vch: virtual channel number

6 % t1,t2 : sample times of first and second factor in the product

7 % dumdum: with four arguments calculates support for two-dimensional ambiguity
8 % functions. There are cases where reduced ambiguity function is null
9 % but the two-dimensional is not.

10 ./-

11 % See also: wrlpg

12 ./-

13 % function [wwr,r]=wr(vch,t1,t2,dumdum);

function [wwr,r]=wr(vch,tl,t2,dumdum) ;

== e
EREEES

global vc_penvabs vc_penv vc_penvo

3

rt=wnz(vc_penvabs,vch);
rt=[min(rt)-1;rt;max(rt)+1];
len=length(rt); lenn=len-(t2-t1);
st=rt(1)-1; % Origin for the part of penvabs used
wwr=vc_penv(st+(l:1lenn) ,vch) .*vc_penv(st+(1+t2-t1:1len),vch);
wur=flipud (wwr) ;
r=til-vc_penvo(vch)-st+(-lenn+1:0);
if nargin>3, % calculate support for two-dim. ambiguities
wwra=vc_penvabs(st+(1:1lenn),vch).*vc_penvabs(st+(1+t2-t1:1len) ,vch);
wwra=flipud(wwra);
suppind=find(wwra“=0) ;
wwr=wwr (suppind); r=r(suppind);
end;

WM NN NN NN N R
O ® ® TG 0E W R OO ®

Range ambiguity function for a given lag profile group. No support is returned, because values at all heights
starting from 1*p_dtau are given.

/geo/gmt/askoh/guisdap/mi152/wrlpg.m
% GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

% function to calculate the range ambiguity function for a lag profile group
See also: lpgwrcalc wr

% function wsum=wrlpg(lpg)
function wsum=wrlpg(lpg)

R A A S
o=

global 1p_t1 1p_t2 1lp_dt 1lp_vc lp_nfir 1lp_fir

- =
- o

12 wsum=0;

13 for 1lp=lpg_lp(lpg)

14 [w,r]=wr(1p_vc(lp),1p_t1(1lp),1p_t2(1p));

15 if length(r)>0,

16 maxr=r(length(r))+(1lp_nfir(lp)-1)*1p_dt(1p);

17 if length(wsum)<maxr,wsum(maxr,1)=0;end;

18 for ind=1:1p_nfir(lp)

19 R=r+(ind-1)*1p_dt(lp);

20 wsum(fix(R))=wsum(fix(R))+1p_fir(ind,1p)*w;
21 end

22 else

23 fprintf(’For lag profile %.0f the range ambiguity function is empty\n’,lp)
24 end

25 end

The following routine calculates an estimate for range to the first gates in the lag profile group (1pg_h) and
an estimate of the width of the ambiguity function (1pg_w).

/geo/gmt/askoh/guisdap/mi52/1pgwrcalc.m
A

1 GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen

2 %

3 % lpgwrcalc.m

4 %

5 % calculates the range ambiguity functions for all signal lag profile groups

6 % and also the range to the first gate and the width of the ambiguity functions
7 %

8 % Variables produced:

9 % lpg_h: Range to the center of range ambiguity function of the first gate

10 % lpg_w: Width of the range ambiguity function (twice the second moment)

=
=
o=

lpg_wr: The range ambiguity function

11

& GUISDAP documentation: GUP init.tex FMI November 4, 1994 at 11.09

12 ./t

13 % See also: init_GUP wrlpg

14 fprintf(’\n Calculating the range ambiguity functions for signal lag profile groups:\n\n’)
15 lpg_wr=zeros(1000,length(lpg_ra))

16 for i=find(lpg_bcs==’s’ | lpg_bcs==’x’)

17 w=wrlpg(i)/10; r=col(l:length(w));

18 lpg_wr(length(w) ,1)=0;1lpg_wr(r,i)=w;

19 indw=find(¥>0.065%max(w)); Y% main body of ambiguity function

20 if length(indw)>0;

21 pp=sum(indw.*w(indw))/sum(w(indw)) ;

22 1pg_h(i)=pp;

23 lpg_w(i)=2*sqrt(sum(w(indw) . *(indw-pp) . 2)/sum(w(indw)));

24 else

25 lpg_h(i)=0; lpg_w(i)=0;

26 end

27 fprintf(’Lag profile group %3.0f first range %5.0f us’,i,lpg_h(i)*p_dtau)
28 fprintf(’ (%5.1f km)’,1pg_h(i)#*p_dtaux*.150)

29 fprintf(’ width %5.0f us \n’,lpg_w(i)*p_dtau)

30 plot(r*p_dtau,w);

31 title([’range ambiguity function for lpg=’ num2str(i)]);grid;¥%prtsc

32 drawnow

33 end

34 fprintf(’\n\nRange ambiguity functions calculated\n\n’)

35 clear ind file fid i w 20 z1 k kO dt nt kold indw left right j pp jold r

The following routine defines temperature, density, frequency and other scales. If the hard coded values are
not suitable for some experiment, they can be redifined by a Matlab file called EXPRNAMFE_specpar.m
/geo/gmt/askoh/guisdap/mi52/read_specpar.m

4\ GUISDAP v1.50 94-03-10 Copyright Markku Lehtinen, Asko Huuskonen
%

2

3 % this script loads the _specpar file for the experiment, if it is available

4 % If the file is not found, the scale parameters will be those given in this routine
5 %

6 % See also: init_GUP

7

8 p_T0=300;

9 p_NO=1lell;

10 p_m0=[30.5 16];

11

12 % p_om=(-6:.1:6)’; % This range is not wide enough

13 p_om=2*sinh(-3:0.05:3.001)’; % Positive values shown below

14 % 0.00 0.10 0.20 0.30 0.40 0.51 0.61 0.71 0.82 0.93 1.04 1.16 1.27
15 % 1.39 1.52 1.64 1.78 1.91 2.05 2.20 2.35 2.51 2.67 2.84 3.02 3.20
16 % 3.40 3.60 3.81 4.03 4.26 4.50 4.75 5.01 5.29 5.58 5.88 6.20 6.54
17 % 6.89 7.25 7.64 8.04 8.47 8.91 9.38 9.87 10.39 10.93 11.50 12.10 12.73
18 % 13.39 14.08 14.81 15.58 16.38 17.23 18.12 19.05 20.04

19 p_RO=1000;

20

21 if exist(’name_expr’)==1,

22

23 file=canon([name_expr name_site ’_specpar’],0);

24

25 if exist(file)==2,

26 eval(file),

27 else

28 fprintf([’\n > ,file,’ file is not available (need not be!)\n’])

29 fprintf(’ Hard coded values for scale parameters will be used\n’)

30 fprintf(’\n?’)

31 end

32 end

33 fprintf(’Temperature scale is %.0f K\n’, p_TO)

34 fprintf(’Electron density scale is %.le m~-3\n’, p_NO)

35 fprintf(’Ion masses are %.1f u and %.1f u\n’, p_m0(1), p_m0(2))

36 fprintf(’Reference range is %.0f us\n’, p_RO)

37 fprintf(’Frequency values in scaled units range from %.1f to %.1f\n’ ,min(p_om),max(p_om))

w
»

clear file

w
°

12

