
0 

 
 

 

  

Digital Signal 
Processing: 
Channel Boards 

 

www.eiscat.se 



1 

 
 

  

Copyright © EISCAT AB 

 
Address:  EISCAT AB 

 Bengt Hultqvists väg 1 

 SE-981 92 Kiruna 

 Sweden 

Phone:  +46 980 791 50 

E-mail:  contact.us@eiscat.se 



2 

 
 

1.1. Information about the radar controller hardware ............ Fel! Bokmärket är inte 
definierat. 

1.2. Commands from the old system which is still valid .......... Fel! Bokmärket är inte 
definierat. 

1.3. New receiver commands used for the E3D demonstration array in Kiruna: ..... Fel! 
Bokmärket är inte definierat. 

1.4. New commands: .............................................. Fel! Bokmärket är inte definierat. 

1.5. The tarlan Compiler ......................................... Fel! Bokmärket är inte definierat. 

1.6. Imposed hardware timing limits and default bit patterns: Fel! Bokmärket är inte 
definierat. 

 

 

 

 

 

 

 

  



3 

 
 

Digital Signal Processing: Channel Boards 
The 15 Msamples/s data stream output from the A/D converter is a discrete-time, digital 
representation ofall information in the 2ndi.f. passband (see The Bandpass Sampling Theorem). 
It is theoretically possible, and some would probably find it aestethically pleasing, to terminate 
the receiver hardware at this point, feed the raw data stream into a powerful computer and do all 
the rest of the signal processing by software.However, after looking at this alternative and some 
others, the EISCAT design team eventually selected a mixed hardware/software system. In the 
new receiver, the A/D data stream is first converted to baseband, low-pass filtered, decimated, 
gated and buffered by one or several channel boards before being sent to the process 
computers. A receiver crate can accommodate six channel boards, so a fully configured receiver 
can select and process up to six spectral windows simultaneously. 

1.1. Functional description 

A single channel board replaces nearly all of the analog hardware associated with a receiver 
channel in the old KST receiver system (2nd local oscillator, 2nd mixer, quadrature detector, post-
detection filters), plus the ADC channel ON/OFF feature and the correlator buffer memory.To 
accomplish all this on a single 6U VME board obviously requires a great deal of complex logic, 
and so every channel board comprises, among other things, 

a data source selector, 

a frequency-agile numerically controlled oscillator (NCO), 

a complex digital mixer, performing real-to-baseband conversion, 

a pair of programmable FIR filter chips, including a decimation feature, 

logic to range gate the decimated sample stream, 

a ping-pong RAM memory to buffer the gated data stream, and 

support logic. 

A HSP 45116 ASIC (for full data please refer 

to http://www.intersil.com/data/fn/fn2/fn2485/ and references therein) contains 

the NCO and real-to-baseband quadrature down-converter functions. As shown in Figure x, the 
HSP 45116 is divided into three main sections. The Phase/Frequency Control Section (PFCS) and 
the Sine/Cosine Section together form a programmable Numerically Controlled Oscillator (NCO). 
The Complex Multiplier andACcumulator (CMAC) multiplies the output of the NCO with an 
external data vector.The NCO frequency is programmed by loading a 32 bit frequency word into 
the PFCS. On the channel boards, the HSP 45116 is clocked at 15.000 MHz by the same clock 

http://www.intersil.com/data/fn/fn2/fn2485/


4 

 
 

signal that drives the A/D conversion system. To generate a frequency f0, thefrequency word 
should then be set to 

(f0 / 15.000) x 232 , where f0 is in MHz. 

The PFCS will automatically generate a corresponding time sequence of phase values. The 
Sine/Cosine Section takes the argument sequence and generates acomplex (cos 2 ? f0 t, sin 2 ? 
f0 t) sinusoid, which becomes one of the CMAC inputs. The CMAC multiplies this (cos, sin) vector 
by an external data vector and outputs the result as a complex result vector. 

Channel boards can be set under computer control to process either of two data streams, 
generated by the two A/D converter units on the Pentek 6420 board, running in parallel. The 
desired data stream is fed in parallel to the real and imaginary ports of the CMAC Vector Input, 
one sample per clock cycle, and multipliedby the rotating vector from the Sine/Cosine Section. 
The NCO frequency, f0, is freely selectable up to 15.000 MHz, but should be somewhere in the 
(8.3 – 14.7) MHz 2nd i.f. range to make sense. It can be set either from the EROS III command 
line or loaded from a radar-controller driven frequency register stack containing 16 registers 
(NCO 0…..NCO 15). 

The resulting complex Vector Output has one component centred on 2*f0 and another centred 
on zero frequency. Only the zero frequency component is required in the further processing, so 
the Vector Output data stream is sent to two paralleled HSP 43220 Decimating Digital Filter chips 
which perform low pass filtering and decimation (Figure y). The output of the HSP 43220’s is a 
true low sample rate, complex baseband signal which is range gated by the sample gate logic and 
stored in one page of the dual-page,256 K samples deep buffer memory. At the same time, data 
stored in the other page is accessible for readout by the crate computer. 

1.2. Data source selection 

The channel board subsection of the system VME rack can accommodate a maximum of six 
channel boards. The two 15 MHz data streams from the Pentek 6420 dual channel A/D converter 
are broadcast to all boards.The boards are arranged in two groups of three. The “left” or L group 
comprises boards 1 to 3 and the “right”or R group boards 4 to 6. For each group separately, one 
can select which of the two data sources shall be the active one. This is done in the .tlan file by 
entering some combination of the following commands at the beginning of each cycle: 

 

 
AD1L       % Data from AD1 to boards 1 - 3 
AD1R       % Data from AD1 to boards 4 - 6 
AD2L       % Data from AD2 to boards 1 - 3 
AD2R       % Data from AD2 to boards 4 - 6 
 



5 

 
 

Important note: These commands are optional. If not found in your .tlan file, the system 
defaults to sending AD1 data to all six channel boards (as if you had actually used the command 
sequence AD1R AD1L). 

One obvious application of the selection feature is in dual-beam VHF experiments, which require 
the whole receiver to be essentially “split in two” to process signals from the two beams 
independently (cf. CP4BV). 

1.3. Loading the NCO frequency table registers 

Every channel board should have its frequency register stack loaded before an experiment is 
started. This is done either from the EROS III command line, or from the .elan file, using the 
command loadfrequency <freqfile> ch<chno> 

If <freqfile> is found and its contents are acceptable, the NCO frequency table register stack on 
the ch<chno> board is loaded with the specified frequencies. Since the boards are initialised one 
at a time, a separate loadfrequency command must be issued for every channel board. 

The <freqfile> file names must be of the type 

$XDIR/ch<chno>_<expname>.nco 

Example: 
set NCO1 $XDIR/ch1_cp1.nco 
loadfrequency $NCO2 ch2 

The <freqfile> files themselves are plain ASCII text files, which typically look like this (the 
example is from CP4, channel 1): 

 
NCOPAR_VS 0.1 
%====================================== 
%cp4 freq settings 
%LO1 298 MHz LO2 84 MHz 
%====================================== 
 
NCO 0  0 
NCO 1  9.8  % f7 
NCO 2  9.6  % f6 
NCO 3 10.2  % f9 
NCO 4 10.0  % f8 
 

The file header always looks the same: NCOPAR_VS 0.1 

Lines beginning with a % are comments only (as in EROS II) 
The file body can contain up to sixteen lines. Each line starts with the keyword NCO, followed by 



6 

 
 

a register address from 0 to 15 and afrequency value in MHz. Comments are allowed after the 
three mandatory fields if preceeded by a %. 

Only those registers which will be used later need to be set; in the extreme case (an experiment 
requiring only one set of frequencies), the file body could be just one line. 

1.4. Setting the NCO at run-time 

To select a pre-loaded frequency from the NCO frequency table at run-time, use the following 
command in the .TLAN file:AT <fsettime> NCOSEL<freqno> 

Example: AT 2345 NCOSEL3 

The NCO will start to output the selected frequency at approx. <fsettime> + 300 ns. 

Important Note: The NCOSEL command is global. When issued, it goes to all channel boards in 
parallel, causing all NCOs to change frequencies at the same time. 

NCOSEL is implemented this way mainly for convenience. Most standard experiments do change 
all frequencies cyclically in successive radar cycles, and so it is practical to have a single 
command per cycle that changes them all at once. 

However, if your experiment is of the kind that requires one or several NCO frequencies to be 
kept while some others are changed, this can be handled just as easily. How to do it is best 
explained by inspecting the following table: 

 

NCOSEL f (CH1) f (CH2) f (CH3) f (CH4) f (CH5) f (CH6) 

0 8.000 8.500 9.000 9.500 10.000 10.500 

1 10.000 8.500 9.000 9.500 10.000 11.000 

2 11.000 8.500 9.000 9.500 10.000 12.000 

 

 

 

 



7 

 
 

In this example, only CH1 and CH6 will be required to change frequencies at some point, while 
the settings of CH2…..CH5 should remain constant. If the same frequency value is entered on 
every line in the CH2…..CH5 .nco files, e.g. like so: 

 

 
NCOPAR_VS 0.1 
%====================================== 
%demoexp freq settings for CH 2: 
%LO1 812 MHz LO2 128 MHz 
%====================================== 
NCO 0 8.500       % almost at band edge ! 
NCO 1 8.500 
NCO 2 8.500 
 

the frequency settings of CH2…..CH5 will not change when the NCOSEL command is issued (the 
effect is that ofre-loading with the same frequency) !Important Note: Use caution if you plan to 
use this feature in an experiment which requires pulse-to-pulse phase coherence of the whole 
system. Preliminary tests indicate that phase coherency is generally preserved when a channel is 
commanded to the same frequency it is already running on, but we cannot yet guarantee that 
this holds under all circumstances. More information on this will follow later. 

1.5. Setting the NCO frequency from the command 

line 

To set the NCO of channel board <chno> to frequency <ncofreq> from the EROS III command 
line, typesetfrequency <chno><ncofreq> 

where <ncofreq> is in MHz. This command can also be used in an .elan file. Instead of specifying 
a single chno, one can also supply a chnolist. All listed channels will be set to the same ncofreq. 
This command pokes the <ncofreq> value straight into the NCO chip(s). There is no copy of the 
value kept in any on-board register. 

Important Note: If the radar controller is running a file containing even a single NCOSEL 

command when the setfrequency command is given, or if such a file is started later, the first 
execution of the NCOSEL will overwrite the poked frequency setting with some value fetched 
from the frequency register stack, and the <ncofreq> value will be lost. Thus setfrequency is only 
useful in cases where no frequency agility at all is required and the radar controller file contains 
no NCOSEL commands, or for test purposes. 



8 

 
 

1.6. Table 1: NCO frequency settings for UHF ion line 

work 

Transmit channel number UHF NCO frequency 

F0 14.000 

F1 13.700 

F2 13.400 

F3 13.100 

F4 12.800 

F5 12.500 

F6 12.200 

F7 11.900 

F8 11.600 

F9 11.300 

F10 11.000 

F11 10.700 

F12 10.400 

F13 10.100 

F14 9.800 

F15 9.500 



9 

 
 

1.7. FIR filter 

The HSP 43220 Decimating Digital Filter chips making up the low pass filter part of the channel 
board are highly complex devices. For the purpose of loading and executing pre-defined filter 
functions, it is however not necessary to know anything about their inner workings. Interested 
users who would like to design their own filters are referred to the manufacturer’s full technical 
documentation of the 43220, available on the Web 

at http://www.intersil.com/data/fn/fn2/fn2486/ and further links therein. 

1.8. Sampling interval, decimation factor and how 

they are related 

Important Note:In the old system, the time interval between successive samples on a given 
channel, tS, was set explicitly by an EROS command. This is no longer so.In the new system, all 
FIR filters output data continuously. The data rate out of a specific FIR filter, dataout_rate, is 
some integer fraction of the 15 MHz input rate, defined by the decimation factor, DF: 

dataout_rate = (15 / DF) MHz 

The time interval between successive samples, tS, becomes: 

tS = (DF / 15)µs 

Example:DF = 15 =>tS = 1 µs 
DF = 225 =>tS = 15 µs 

The decimation factor must be loaded into the FIR chips at setup time, together with the FIR 

parameters. Thus, when you select a filter, you also select a sample 

rate ! 

1.9. Loading the FIR filters; filter library 

Every channel board should have its FIR chips loaded before an experiment is started. For 
convenience, a filter library, located in the directory/kst/dsp/fir/ has been established at all 
sites. It contains parameter files defining a number of different Gaussian FIR filters. There are 
also Postscript graphics files depicting the filter responses, to aid users in selecting the best filter 
for their application. 

http://www.intersil.com/data/fn/fn2/fn2486/


10 

 
 

The file names are self-explanatory: 

b<bw>d<df>.firbw is the one-sided -3 dB bandwidth in KHz and df is the decimation factor. 
Please keep in mind that, since two filter chips are operating in parallel, the full instantaneous 
bandwidth at the filter output is always twice the one-sided bandwidth. All filters available at 
present, including all those used in the various Common Programmes, are listed in Table 2. 

To load a filter file, use the following command either from the EROS III command line or in 
your .elan file: loadfilter <chno><FIR_filename>  

The boards are initialised one at a time, so you should issue a separate command for each 
board. As the FIR loading is a relatively slow process (a large number of parameters must be 
transferred serially into the FIR chips), re-loading “on the fly” under RC control is strongly 
discouraged.  

Table 2: FIR filter files available in /kst/dsp/fir/  

Filename -3 dB BW (kHz) Decimation factor Sample interval (µs) Used in 

b15d225.fir 15 225 15 CP4BVLP/PP 

b16d450.fir 16 450 30  

b20d225.fir 20 225 15  

b21d360.fir 21 360 24  

b25d105.fir 25 105 7  

b25d150.fir 25 150 10 CP1LTLP 

b25d315.fir 25 315 21  

b30d225.fir 30 225 15 CP7VLP/PP 

b35d150.fir 35 150 10  

b42d180.fir 42 180 12  

b75d105.fir 75 105 7 CP1LTA/C 

b250d30.fir 250 30 2  



11 

 
 

1.10. Sample gate 

The data path from the FIR filter to the buffer memory passes through a sample gate. By opening 
and closing the gate at precisely defined times, the user selects data from specific range intervals 
for further processing. Thus the sample gate is a functional replacement for the turning on and 
turning off of individual ADC channels in the old receiver.The sample gate command syntax is 
almost the same as the “channel” commands in the old system. 

To turn on a channel at time <starttime>: 

AT <starttime> CH<chno> 

To turn off a channel at time <endtime>: 

AT <endtime> CH<chno>OFF 

Example: 
AT 3456 CH3 
AT 4567 CH3OFF 

Important Note:In the old system, for obscure reasons the CH<chno>OFF command had 

to be issued prematurely, i.e. <endtime> had to be set to a value about halfway into the last 
sample period to get the desired number of samples. If issued later, the ADC produced one 
sample too many. 

In the new system, <endtime> is always set to the exact end-time of the desired sampling 
interval. (<endtime> – <starttime>) must be an integer multiple of the time interval between 
samples in the FIR output data stream, tS = ( DF / 15), otherwise the last sample may be lost. 

1.11. Buffer memory 

Each channel board has a dual-page, 256 K samples deep, “swinging buffer” memory area. Data 
from the FIR filter is written into one memory page whenever the sample gate is opened. At the 
same time, data stored in the other page can be accessed by the Force CPU-50 crate computer.At 
the end of a data collection period (which can be one or many radar cycles), the radar controller 
must issue a BUFLIP command: 

AT <bufliptime> BUFLIP 

This exchanges the roles of the two pages (“flips” them), just as in the old correlator, making the 
accumulated data accessible for read-out. To off-load the data, the radar controller must then 
issue a STC (“start compute”) command, which generates an interrupt to the CPU-50: 

AT <stctime> STC 



12 

 
 

The interrupt handler running in the CPU-50responds by launching a real-time software 
process,/kst/bin/ lag_wrap, which reads data from the board via the VME bus and processes it as 
required. 

Important Note: In the old system, for illogical reasons one had to issue the STC command while 
at least one channel was still sampling. 

In the new system, BUFLIP should only be issued after all channels are closed, but always at least 
1 µs before STC, which is the last executable command in a radar cycle. BUFLIP and STC must 
both be issued no earlier than 15 us before the REP that defines the end of the radar cycle: 

<reptime> – 15 us<=<bufliptime><=<stctime><=<reptime> 

Example: 
AT 1234 ALLOFF 
AT 1235 BUFLIP 
AT 1236 STC 
AT 1250 REP 

If this is not followed, data may become lost or corrupted ! 

1.12. Digital Signal Processing: The “DSP Engine” 

1.12.1 /kst/bin/lag_wrap and decodump 

/kst/bin/lag_wrap and decodump are two real-time processes, which together form the new 
receiver system “DSP engine”. They perform the basic signal processing primitives required in an 
incoherent scatter radar receiver, and so can be regarded as a “software 
correlator”./kst/bin/lag_wrap runs on the CPU-50 VME Sparc computer, while decodump runs in 
the experiment server (t45001 in Tromsø, s2501 in Sodankylä or k2501 in Kiruna). 

Important Note: /kst/bin/lag_wrap can only run in the CPU50 VME crate computer, since 

it references a VME back-plane driver library which is used to communicate with the channel 
boards. 

The two routines handle different parts of the processing, as follows: 

/kst/bin/lag_wrap reads samples from the channel boards, runs FIR filtering on the sample vector 
if required and performs all MAC (multiply-and-accumulate) operations intrinsic to forming 
correlation estimates. It accumulates data for one pre-integration cycle at a time. At the end of 
the cycle, /kst/bin/lag_wrap writes the accumulated data to a temporary disk file which physically 
resides on the experiment server disk. There is a separate 100 Mbit/s Ethernet line between the 



13 

 
 

two machines dedicated to this transfer, allowing /kst/bin/lag_wrap to off-load data at rates of up 
to 6 – 7 MB/sec, sustained. 

Now decodump wakes up in the server. It reads the data off the temporary file, discards certain 
irrelevant and/or meaningless areas, decodes those results that require decoding (e.g. alternating 
codes data), formats the results, adds auxiliary data and writes the completed data record to a 
result file, where the user and/or GUISDAP can retrieve it. 

Maybe all this looks as prohibitive as programming the old correlator? Relax – from the user’s 
point of view,/kst/bin/lag_wrap and decodump can be visualised as one process which can read 
channel board memories and do something useful with the data it finds there. You will need to 
tell them what to do by creating a few simple files. 

1.13. How to use /kst/bin/lag_wrap 

At the moment, /kst/bin/lag_wrap can transfer raw data and/or compute 

lag profiles, 

gated power profiles and 

total power estimates. 

FIR pre-filtering of the amplitude domain data (e.g. Barker decoding) can be applied before the 
main processing. 

When your experiment is run from the default experiment user (at present /kstdev/), 
/kst/bin/lag_wrap is already in your path and you don’t need to do anything extra to retrieve 
it.The following three steps are required to get a new experiment going: 

Create the required files. As a minimum, you need a set-up file with the name <exp_name>.fil, where 
<exp_name> is the name of your experiment. Depending on what you want to do, you may also need 
one or more code files and/or one or more FIR filter coefficient files. 

Run /kst/bin/lag_wrap in compile/check mode. Switches -c and -f must be set and<exp_name>.fil 
specified after -f. Correct any errors. Once your files compile correctly, a file with the name 
<exp_name>.DECO will be automatically generated. The contents of this file tell decodump what to 
do. 

Start EROS III and start your <exp_name> .elan file. Somewhere in this file you will have a 
start_recording command; when this is executed, it starts /kst/bin/lag_wrap and decodump in run 
mode and the data begins to flow! At this time, there will be a dump_map file generated, showing you 
the layout of the auto-generated result memory area. 

Once these three steps have been successfully completed, you don’t need to repeat steps 1 and 2 
again when starting the experiment – you can just call up your .elan file and go! 



14 

 
 

1.14. Set-up file syntax and structure 

The contents of the set-up file, <exp_name>.fil, is basically a sequence of statements that 
assignvaluesto control parameters, specifying what /kst/bin/lag_wrap and decodump will do with 
your data.We have made a deliberate effort to keep the number of control parameters as small 
as possible without restricting the degrees of freedom too much. Parameter definitions and 
syntax have been chosen to be self-explanatory wherever possible. Please note that some 
parameters are mandatory.Several others can only be used with specific type= values and some 
are relevant only in certain combinations. 

While not strictly necessary from the functional point of view, we added two delimiter 
statements, end_channel and end_type, to the syntax. With the aid of these statements, the 
/kst/bin/lag_wrap compiler will enforce that the set-up files are always structured by channels 
and data types in hierarchical order. 

The following statements are mandatory: 

nr_stc= <number_of_STCs_per_R/C_loop>; 

channel= <physical_channel_number>; 
end_channel; 

type= <type_of_computation>; 
end_type;  

nr_stc= <number_of_STCs_per_R/C_loop>; 

tells the system how many STC commands to expect per integration period. During experiment 
initialisation, the system reads the radar controller, finds out how many loops per integration 
have been programmed into it, and multiplies this number by number_of_STCs_per_R/C_loop to 
find the expected number of STCs per pre-integration. At runtime, this product is compared to 
the number of STC interrupts actually processed. If the two don’t agree, an error message is 
output on the CPU50 sys-log file. It is normal to see this message appear in the very first 
integration period, but it should not appear again as long as everything runs OK. 

channel= <physical_channel_number>; 
and 

end_channel; 

must always appear as a pair. channel=specifies a physical channel number in the range 1…..6. 
Everything between this statement and the next end_channel statement will apply only to the 
specified physical_channel_number. 



15 

 
 

Between a channel= and a end_channel, there must be inserted one or several block(s) of 
statements, each bracketed by a 

type= <type_of_computation>; 

. 

end_type; 

pair. Every such statement block uniquely specifies a particular type of processing to be applied 
to some or all of the data found in physical_channel_number.type_of_computation must have a 
value in the range 0….3: 

Raw Data. Data is read from the channel boards, buffered with no processing and transferred to 
decodump at the end of each pre-integration. This is what you should specify if you want to record 
raw data for off-line processing. 

Lag Profiles. Data read from the channel board is processed into a set of lag profiles, starting with lag-
0 and ending with lag-max_lag. All possible cross products are computed. The output vector is the 
entire set of lag profiles in order of increasing lag index. All lag >0 profiles are padded with zeros at 
the end, such that all “profiles” are of equal length during the transfer to the server. This is the 
“standard” computation type which does essentially everything needed for routine operation. For 
ungated power profile, use type_of_computation= 1with max_lag set to zero. 

Gated Power Profile. Basically the same as a lag-0 profile with the results from several samples 
summed into each output vector location. Included to maintain backward compatibility. 

Total Power. Generates a single (or a very few) output value(s) equal to the sum of squares of every 
point in the vec_len, data_start input vector. 

Example: A set-up file for an experiment using channel 1 for raw data taking and channel 4 for 
lag profiles and gated power profiles could have a structure like this: 

 

nr_stc= 34; 

channel= 1; 

    type=  0; 

        . 

    end_type; 

end_channel; 

channel= 4; 

    type=  1; 

        . 



16 

 
 

    end_type; 

    type=  2; 

        . 

    end_type; 

end_channel; 

The full dots indicate where the statement blocks specific to each type should appear.Statements 
which must appear in every type=block: 

vec_len= <number_of_input_samples>; 
data_start= <start_address_in_buffer_memory>; 

These two statements specify how many samples should be read from the 
physical_channel_number buffer memory, and where the reading should start from. Please note 
that the buffer memory addresses start from 0 ! 

Statements which may appear in any type=block: 

fir_len= <number_of_taps>; 
fir_file= <firfile>; 

When present, these statements will cause the samples to be FIR filtered (e.g. for decoding 
Barker coded data) before the processing specified by the type= statement takes place. They 
must appear together; fir_len= is used to specify the number of taps in the FIR filter and fir_file= 
is used to specify the name of a file specifying the tap weights. One tap per line! 

If no FIR filtering is required,simply omit these instructions. 

res_mult= <number_of_consecutive_result_vectors>; 

This statement requires a bit of explanation. At runtime, /kst/bin/lag_wrap automatically reserves 
the amount of result memory required to store the results from a single instance of all 
computations specified by the set-up file, that is, the results produced after a single STC 
interrupt. At the beginning of every pre-integration, this reserved memory will be cleared and 
results will then be accumulated in-place for the entire pre-integration cycle. 

However, if a res_mult=statement is found in the set-up file, /kst/bin/lag_wrapinstead reserves 

(number_of_consecutive_result_vectors) X (the computed number of memory locations) 

The effect is that of creating number_of_consecutive_result_vectors consecutive output vectors in 
the result memory. /kst/bin/lag_wrap will now store data computed after STC number 1 into the 
first vector, data computed after STC number 2 into the second vector, and so on until all 
number_of_consecutive_result_vectors have been written to once. It will then start over with the 
first result vector, but this time it will accumulate rather than overwrite the old data. 



17 

 
 

As the experienced EISCAT user will see, this can be useful in a number of applications. 

Example: When processing alternating codes data, results from different codes must be kept 
separated until decodump takes over and decodes the whole set. This can be arranged by setting 

res_mult= <number_of_STCs_per_code_set>; 

Example: If the user wants to record Raw Data (type 0), she sets 

res_mult= <number_of_STCs_per_preintegration>; 

The effect is that every single raw data sample is buffered individually and never overwritten 
before being transferred to the server and decodump. 

Important Note: In most cases (but not always), the total number of STCs in a pre-integration 
will be an integer multiple of the res_mult= value for the data to make sense. There is no 
software check of this at runtime, so use caution ! 

Type specific statements: 

type= 0 (Raw Data) block: 

None. However, for the data to make sense, you would normally include a 

res_mult= <number_of_STCs_per_preintegration>; 

command in every type= 0 block (see above!) 

type= 1 (Lag Profile) block: 

max_lag= <highest_lag_index_computed>; 

specifies the highest lag index to be computed. If omitted, defaults to 0. 

code_len= <number_of_bauds_per_code>; 

Meaningful only for alternating codes data. Specifies the number of bauds per code sequence 
(i.e. per IPP). 

ac_file= <codefile.txt>; 

specifies the name of a code file containing the definition of the alternating codes set used.This is 
used by the decoding function in decodump. The format of this file is extremely simple: Each row 
specifies one code. As many rows as there are codes in the set. Positive and negative bauds are 
specified as 1 and -1 respectively. 
n_frac= <fractionality>; 

tells decodump to what fractionality the input data has been sampled. This information is 
required to enable correct decoding of the resulting fractional lags. 



18 

 
 

Definition: fractionality = (transmitted baud length/sample interval) 

fractionality must be an integer. It is the user’s responsibility to select baud lengths and sample 
intervals such that this is met. 
sub_int= <number_of_subintegrated_cycles>; 

specifies the number of sequential R/C cycles to be accumulated in the same output vector. This 
can be used when consecutive cycles are logically equivalent (i.e. modulated with the same code, 
although perhaps not transmitted at the same frequency). Only meaningful when used together 
with res_mult; if omitted, number_of_subintegrated_cycles defaults to 1. 
do_zlag= <zerolagflag>; 

decodump normally discards the lag-0 profile data from an alternating codes set, but by setting 

do_zlag= 1; 

you can force decodump to output also this part of the result vector. Useful for checking 
purposes. 
type= 2 (Gated Power Profile) block: 

gating= <gating_value>; 

specifies how many samples will be used to compute each point in the output vector. 
type= 3 (Total Power) block: 

sub_div= <sub_division_value>; 

specifies how many output points will be generated by this instance of type= 3. The 
number_of_input_samples in the input vector will be sub-divided into sub_division_value 
consecutive pieces and the total power of each piece computed and stored separately. Note that 
for this to work correctly, number_of_input_samples must be an integer multiple of 
sub_division_value ! 
Example: The set-up file for the new CP1-L-T looks like this: 

 
% cp1lt.fil 
% 
% Channel one 
 
channel =1; 
%ch_mem_base=387; 
 
% 40 us (F region) power profile, signal 
    type=1; 
        max_lag=0; 
        vec_len=240; 
        data_start=0; 
    end_type 
 
% Power profile, background 



19 

 
 

    type=1; 
        max_lag=0; 
        vec_len=120; 
        data_start=240; 
    end_type 
 
% Power profile, calibration 
    type=1; 
        max_lag=0; 
        vec_len=27; 
        data_start=360; 
    end_type 
end_chan 
 
% Channel two 
 
channel =2; 
%ch_mem_base=644; 
 
% 350 us long pulse, signal  
    type=1; 
        max_lag=24; 
        vec_len=416; 
        data_start=0; 
    end_type 
 
% Long pulse, background  
    type=1; 
        max_lag=24; 
        vec_len=202; 
        data_start=416; 
    end_type 
 
% Long pulse, calibration  
    type=1; 
        max_lag=0; 
        vec_len=26; 
        data_start=618; 
    end_type 
 
end_chan 
 
% Channel three 
 
channel =3; 
%ch_mem_base=594; 
 
% E region power profile from 21 us pulse, sampled at 7 us 
    type=1; 
        max_lag=0; 
        vec_len=309; 
        data_start=0; 
    end_type 
 
% 16 x 21 us alternating code, sampled at 7 us  
    type=1; 
        res_mult=32; 
        code_len=16; 
        n_frac=3; 



20 

 
 

        ac_file=ac.txt; 
        sub_int=2; 
        max_lag=44; 
        vec_len=285; 
        data_start=309; 
    end_type 
 
end_chan 
 
% Channel four 
 
channel =4; 
%ch_mem_base=624; 
 
% second E region power profile, signal 
    type=1; 
        max_lag=0; 
        vec_len=309; 
        data_start=0; 
    end_type 
  
% E region power profile, background 
    type=1; 
        max_lag=0; 
        vec_len=276; 
        data_start=309; 
    end_type 
 
% E region power profile, background/calibration 
    type=1; 
        max_lag=0; 
        vec_len=39; 
        data_start=585; 
    end_type 
end_chan 

 


